The alternative types of composite structure made of wood and cement based building materials needs to meet with the high demand for earthquake-resistant houses in Indonesia. In order to understand the mechanism of ea...The alternative types of composite structure made of wood and cement based building materials needs to meet with the high demand for earthquake-resistant houses in Indonesia. In order to understand the mechanism of earthquake resisting performance of shear wall, it is necessary to investigate not only elastic behavior of shear walls but also non-linear one. In this study, series of full-scale experiments on timber frame shear walls composed of Akasia wood (Acacia mangium) sheathed by Fiber Cement Board (FCB) were carried out. For predicting skeleton curve, a series of theoretical equations was derived, which cannot only solve arbitrary nail pattern shear wall but also nonlinear behavior after yielding. Further, for describing hysteresis loops of shear walls, so-called Normalized Cyclic Loop (NCL) model was adopted. By combining two theoretical approaches, weintended to predict whole cyclic shear wall behaviors tested. Good agreements were obtained from comparison between experiment and prediction. The information obtain by this study will be useful for practical engineers or structural designers to design the high performance earthquake resisting timber houses.展开更多
The shear wall with and without openings that served as a structural element or/and partition wall was utilized in a low-cost housing for the low-income people in Indonesia. The houses,however,should be withstoodfrom ...The shear wall with and without openings that served as a structural element or/and partition wall was utilized in a low-cost housing for the low-income people in Indonesia. The houses,however,should be withstoodfrom earthquake inertial force, so there must be no casualties when disaster struck. The alternative types of composite structure made of wood and cement based building materials needed to meet with the high demand for earthquake-resistant houses in Indonesia. In order to understand the mechanism of earthquake resisting performance of shear wall, we needs to investigate behavior of shear wallsnot only for cyclic static but alsofor dynamic loading. In this study, theseries of full-scale experiment on timber frame shear walls with and without openings,compose of Laminated Veneer Lumber (LVL) engineered wood (Paraserianthes Falcatariaand Hevea Brasiliensis) and sheathed by Fiber Cement Board (FCB), was carried out.By analyzing testing result using theoretical approaches, we intended to predict static initial stiffness and yielding strength as well as basic dynamic properties shear walls. For static behavior, good agreements were obtain from comparison between experiment and theoretical prediction based on mechanical model. While, for dynamic behavior, agreement was not sufficient due tothe effect of bending and rocking of actual test specimens. The information obtain by this study will be useful for practical engineers or structural designers to design the high performance earthquake resisting timber houses with a low construction cost.展开更多
文摘The alternative types of composite structure made of wood and cement based building materials needs to meet with the high demand for earthquake-resistant houses in Indonesia. In order to understand the mechanism of earthquake resisting performance of shear wall, it is necessary to investigate not only elastic behavior of shear walls but also non-linear one. In this study, series of full-scale experiments on timber frame shear walls composed of Akasia wood (Acacia mangium) sheathed by Fiber Cement Board (FCB) were carried out. For predicting skeleton curve, a series of theoretical equations was derived, which cannot only solve arbitrary nail pattern shear wall but also nonlinear behavior after yielding. Further, for describing hysteresis loops of shear walls, so-called Normalized Cyclic Loop (NCL) model was adopted. By combining two theoretical approaches, weintended to predict whole cyclic shear wall behaviors tested. Good agreements were obtained from comparison between experiment and prediction. The information obtain by this study will be useful for practical engineers or structural designers to design the high performance earthquake resisting timber houses.
文摘The shear wall with and without openings that served as a structural element or/and partition wall was utilized in a low-cost housing for the low-income people in Indonesia. The houses,however,should be withstoodfrom earthquake inertial force, so there must be no casualties when disaster struck. The alternative types of composite structure made of wood and cement based building materials needed to meet with the high demand for earthquake-resistant houses in Indonesia. In order to understand the mechanism of earthquake resisting performance of shear wall, we needs to investigate behavior of shear wallsnot only for cyclic static but alsofor dynamic loading. In this study, theseries of full-scale experiment on timber frame shear walls with and without openings,compose of Laminated Veneer Lumber (LVL) engineered wood (Paraserianthes Falcatariaand Hevea Brasiliensis) and sheathed by Fiber Cement Board (FCB), was carried out.By analyzing testing result using theoretical approaches, we intended to predict static initial stiffness and yielding strength as well as basic dynamic properties shear walls. For static behavior, good agreements were obtain from comparison between experiment and theoretical prediction based on mechanical model. While, for dynamic behavior, agreement was not sufficient due tothe effect of bending and rocking of actual test specimens. The information obtain by this study will be useful for practical engineers or structural designers to design the high performance earthquake resisting timber houses with a low construction cost.