The aphid-ant mutnalistic relationships are not necessarily obligate for neither partners but evidence is that such interactions provide them strong advantages in terms of global fitness. While it is largely assumed t...The aphid-ant mutnalistic relationships are not necessarily obligate for neither partners but evidence is that such interactions provide them strong advantages in terms of global fitness. While it is largely assumed that ants actively search for their mutualistic partners namely using volatile cues; whether winged aphids (i.e., aphids' most mobile form) are able to select ant-frequented areas had not been investigated so far. Ant-frequented sites would indeed offer several advantages for these aphids including a lower predation pressure through ant presence and enhanced chances of establishing mutuaslistic interactions with neighbor ant colonies. In the field, aphid colonies are often observed in higher densities around ant nests, which is probably linked to a better survival ensured by ants' services. Nevertheless, this could also result from a preferential establishment of winged aphids in ant-frequented areas. We tested this last hypothesis through different ethological assays and show that the facultative myrmecophilous black bean aphid, Aphisfabae L., does not orientate its search for a host plant preferentially toward ant-frequented plants. However, our results suggest that ants reduce the number of winged aphids leaving the newly colonized plant. Thus, ants involved in facultative myrmecophilous interactions with aphids appear to contribute to structure aphid populations in the field by ensuring a better establishment and survival of newly established colonies rather than by inducing a deliberate plant selection by aphid partners based on the proximity of ant colonies.展开更多
Current evidence suggests that pollen is both chemically and structurally protected. Despite increasing interest in studying bee-flower networks, the constraints for bee development related to pollen nutritional conte...Current evidence suggests that pollen is both chemically and structurally protected. Despite increasing interest in studying bee-flower networks, the constraints for bee development related to pollen nutritional content, toxicity and digestibility as well as their role in the shaping of bee-flower interactions have been poorly studied. In this study we combined bioassays of the generalist bee Bombus terrestris on pollen of Cirsium, Trifolium, Salix, and Cistus genera with an assessment of nutritional content, toxicity, and digestibility of pollen. Microcolonies showed significant differences in their development, non-host pollen of Cirsium being the most unfavorable. This pollen was characterized by the presence of quite rare 37-sterols and a low digestibility. Cirsium consumption seemed increase syrup collection, which is probably related to a detoxification mixing behavior. These results strongly suggest that pollen traits may act as drivers of plant selection by bees and partly explain why Asteraceae pollen is rare in bee generalist diet.展开更多
文摘The aphid-ant mutnalistic relationships are not necessarily obligate for neither partners but evidence is that such interactions provide them strong advantages in terms of global fitness. While it is largely assumed that ants actively search for their mutualistic partners namely using volatile cues; whether winged aphids (i.e., aphids' most mobile form) are able to select ant-frequented areas had not been investigated so far. Ant-frequented sites would indeed offer several advantages for these aphids including a lower predation pressure through ant presence and enhanced chances of establishing mutuaslistic interactions with neighbor ant colonies. In the field, aphid colonies are often observed in higher densities around ant nests, which is probably linked to a better survival ensured by ants' services. Nevertheless, this could also result from a preferential establishment of winged aphids in ant-frequented areas. We tested this last hypothesis through different ethological assays and show that the facultative myrmecophilous black bean aphid, Aphisfabae L., does not orientate its search for a host plant preferentially toward ant-frequented plants. However, our results suggest that ants reduce the number of winged aphids leaving the newly colonized plant. Thus, ants involved in facultative myrmecophilous interactions with aphids appear to contribute to structure aphid populations in the field by ensuring a better establishment and survival of newly established colonies rather than by inducing a deliberate plant selection by aphid partners based on the proximity of ant colonies.
文摘Current evidence suggests that pollen is both chemically and structurally protected. Despite increasing interest in studying bee-flower networks, the constraints for bee development related to pollen nutritional content, toxicity and digestibility as well as their role in the shaping of bee-flower interactions have been poorly studied. In this study we combined bioassays of the generalist bee Bombus terrestris on pollen of Cirsium, Trifolium, Salix, and Cistus genera with an assessment of nutritional content, toxicity, and digestibility of pollen. Microcolonies showed significant differences in their development, non-host pollen of Cirsium being the most unfavorable. This pollen was characterized by the presence of quite rare 37-sterols and a low digestibility. Cirsium consumption seemed increase syrup collection, which is probably related to a detoxification mixing behavior. These results strongly suggest that pollen traits may act as drivers of plant selection by bees and partly explain why Asteraceae pollen is rare in bee generalist diet.