AIMTo identify and characterize functionally distinct subpopulation of adipose-derived stem cells (ADSCs). METHODSADSCs cultured from mouse subcutaneous adipose tissue were sorted fluorescence-activated cell sorter ba...AIMTo identify and characterize functionally distinct subpopulation of adipose-derived stem cells (ADSCs). METHODSADSCs cultured from mouse subcutaneous adipose tissue were sorted fluorescence-activated cell sorter based on aldehyde dehydrogenase (ALDH) activity, a widely used stem cell marker. Differentiation potentials were analyzed by utilizing immunocytofluorescece and its quantitative analysis. RESULTSApproximately 15% of bulk ADSCs showed high ALDH activity in flow cytometric analysis. Although significant difference was not seen in proliferation capacity, the adipogenic and osteogenic differentiation capacity was higher in ALDH<sup>Hi</sup> subpopulations than in ALDH<sup>Lo</sup>. Gene set enrichment analysis revealed that ribosome-related gene sets were enriched in the ALDH<sup>Hi</sup> subpopulation. CONCLUSIONHigh ALDH activity is a useful marker for identifying functionally different subpopulations in murine ADSCs. Additionally, we suggested the importance of ribosome for differentiation of ADSCs by gene set enrichment analysis.展开更多
基金Supported by JSPS KAKENHI(Grants-in-Aid for Scientific Research) for Nishikawa S,No.26893172
文摘AIMTo identify and characterize functionally distinct subpopulation of adipose-derived stem cells (ADSCs). METHODSADSCs cultured from mouse subcutaneous adipose tissue were sorted fluorescence-activated cell sorter based on aldehyde dehydrogenase (ALDH) activity, a widely used stem cell marker. Differentiation potentials were analyzed by utilizing immunocytofluorescece and its quantitative analysis. RESULTSApproximately 15% of bulk ADSCs showed high ALDH activity in flow cytometric analysis. Although significant difference was not seen in proliferation capacity, the adipogenic and osteogenic differentiation capacity was higher in ALDH<sup>Hi</sup> subpopulations than in ALDH<sup>Lo</sup>. Gene set enrichment analysis revealed that ribosome-related gene sets were enriched in the ALDH<sup>Hi</sup> subpopulation. CONCLUSIONHigh ALDH activity is a useful marker for identifying functionally different subpopulations in murine ADSCs. Additionally, we suggested the importance of ribosome for differentiation of ADSCs by gene set enrichment analysis.