The collective Bamiltonian up to the fourth order for multi-O(4) model is derived based on the self-consistent collective-coordinate (SCC) method, which is formulated in the framework of the time-dependent Hartree...The collective Bamiltonian up to the fourth order for multi-O(4) model is derived based on the self-consistent collective-coordinate (SCC) method, which is formulated in the framework of the time-dependent Hartree-Bogoliubov (TDHB) theory. The validity of the collective Hamiltonian is checked in the two special cases of the multi-O(4) model: the case where the number of the shells is equal to one (a single j-shell case), and the case where the Hartree-Bogoliubov equilibrium point is spherical (the spherical case). The collective Hamiltonian constitutes a good starting point to study nuclear shape coexistence.展开更多
基金The project supported by the Director Foundation from the Department of Nuclear Physics of China Institute of Atomic Energy under Grant Nos. 11SZZ200501 and 11SZZ200601 0ne of the authors (J.Z. Gu) is grateful to H. Aiba, K. Hagino, K. Matsuyanagi, S. Mizutori, F. Sakata, and Y.Z. Zhuo for valuable discussions on this subject. He also acknowledges support from Postdoctoral Fellowship for Foreign Researchers of the Japan Society for the Promotion of Science with thanks.
文摘The collective Bamiltonian up to the fourth order for multi-O(4) model is derived based on the self-consistent collective-coordinate (SCC) method, which is formulated in the framework of the time-dependent Hartree-Bogoliubov (TDHB) theory. The validity of the collective Hamiltonian is checked in the two special cases of the multi-O(4) model: the case where the number of the shells is equal to one (a single j-shell case), and the case where the Hartree-Bogoliubov equilibrium point is spherical (the spherical case). The collective Hamiltonian constitutes a good starting point to study nuclear shape coexistence.