期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CO2 Absorption by “Dry Ionic Liquids”
1
作者 Mayuko Ishihara masaya miyake Mitsuru Satoh 《Green and Sustainable Chemistry》 2016年第4期167-181,共15页
Dry Ionic Liquid (D-IL) never means some “water-free” ionic liquid but is a member of “Dry Matter (DM)”. DM is a collective name for powdery substances that are composed of micro droplets as an inner core phase an... Dry Ionic Liquid (D-IL) never means some “water-free” ionic liquid but is a member of “Dry Matter (DM)”. DM is a collective name for powdery substances that are composed of micro droplets as an inner core phase and surrounding hydrophobic silica nano particles as the shell part. When the core part is water, it is called Dry Water (DW), which is the first member of DM, while D-IL is the newest one. Because of the much larger surface area of DM compared with that of the inner phase in bulk state, this novel substances are expected to show excellent performance for any mass transfer through the gas-liquid interface. In the present study, we investigated CO<sub>2</sub> absorption by some D-ILs and a DM containing a polyamine in terms of the speed to the equilibrium and a mol-based absorption efficiency. Compared with the respective bulk systems, the D-IL and DM systems proved to be accelerated by ca.50 times without impairing the absorption efficiency. 展开更多
关键词 Dry Matter CO2 Absorption Ionic Liquids Silica Nanoparticles
下载PDF
CO<sub>2</sub>Absorption Performance of “Dry Matter” Prepared with Amino Acid-Based Ionic Liquids
2
作者 masaya miyake Mitsuru Satoh 《Green and Sustainable Chemistry》 2017年第3期203-216,共14页
Dry Matter (DM) is a powdery substance which is composed of micro droplets and surrounding hydrophobic silica nanoparticles. Because of the much larger surface area than that of the corresponding bulk liquid, DM, whic... Dry Matter (DM) is a powdery substance which is composed of micro droplets and surrounding hydrophobic silica nanoparticles. Because of the much larger surface area than that of the corresponding bulk liquid, DM, which contains amino-functionalized ionic liquids (ILs), is a promising CO2 absorption material provided with quick absorption speed. In the present study, we successfully prepared powdery DMs by utilizing aqueous solutions of amino acid-based ILs (tetraethylammonium glycine [N2222][Gly], and tetraethylammonium alanine [N2222][Ala]). Although a DM with lysine-based IL (N2222) [Lys]) was also prepared, only a soufflé-like material was obtained. We measured CO2 absorption performance for the DMs to find that the mass-base absorption ability (mass-base A.A.) (CO2 mol/DM kg) and the mol-base one (CO2 mol/IL mol) of [N2222][Lys] were ca. two times of [N2222][Gly] and [N2222][Ala], while the absorption speed of the former was inferior to the latter two, i.e., ca.15 min vs. 5 min for 90% absorption. In order to improve the mass-base A.A. of [N2222][Gly], we used 10% of aqueous poly(allylamine) (PAlAm) solution instead of water. The resultant mass-base A.A. proved to be significantly larger (1.9) than either of those of the respective single component systems (1.1 and 0.75 for the bulk IL and aq. PAlAm, respectively), and comparable to the A.A. (1.6 - 2.5) of 20% - 30% monoethanolamine solution which is commonly used in industrial application. 展开更多
关键词 Dry Matter Ionic Liquid CO2 ABSORPTION AMINO Acid POLYALLYLAMINE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部