期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Elicitation-Based Modulation of Shelf Life in Fruits: Physiological and Molecular Insights
1
作者 Ankita Kundu Abir Das +4 位作者 Sayan Pal Arijit Ghosh Malay Kumar Adak masayuki fujita Mirza Hasanuzzaman 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第8期2283-2300,共18页
The process of ripening involves physiological and biochemical events that become a concern during postharvest storage.We have documented different approaches for the preservation and maintenance of fruit quality duri... The process of ripening involves physiological and biochemical events that become a concern during postharvest storage.We have documented different approaches for the preservation and maintenance of fruit quality during the postharvest period that are biocompatible and fully safe for consumption.Chemical residues that sustain sensory characteristics,such as color,flavor,aroma,and texture,are considered.In fruit ripening,both physical and chemical elicitors are described that regulate ethylene biosynthesis or its signaling for gene expression.The key regulatory enzymes,such as ACC synthase and ACC oxidase,for ethylene biosynthesis,are important for both climacteric and non-climacteric fruits.Anti-oxidizing genes that retain sensory characteristics are concerns in this respect.Chemical elicitors,including chitosan,polyamine,phenolics,lipopolysaccharide,silver derivatives,and nanocomposites,are described.Gas pressure,light wavelengths,relative humidity,cooling,and other environmental factors are important for improved postharvest storage.These elicitors maintain redox status by inhibiting the generation of reactive oxygen species(ROS)or their lysis.Growth regulators,including abscisic acid,auxin,brassinosteroids,jasmonic acid,and salicylic acid,are important for the regulation of ripening.Mechanical injuries,ionic imbalances,temperature variations,and tissue dehydration can occur irrespective of ripening cate-gories.The use of synthetic physiochemically active compounds is discussed in terms of physiological,metabolic,cellular,and molecular functions.Ethylene-induced autocatalytic processes,antioxidant cascades,epigenetic regulation,and homeodomain gene expression are discussed.Sugar–acid metabolism,dissolution of the cell wall,and direct or indirect production of secondary metabolites related to postharvest storage are mentioned regarding chilling storage.Elicitors and agrochemicals that trigger plant defense to increase secondary metabolite production are discussed for reducing fruit senescence during postharvest storage. 展开更多
关键词 EPIGENETICS ethylene ELICITORS RIPENING POLYPHENOLICS postharvest storage
下载PDF
Xanthogranulomatous Inflammation of Myometrium Causing Pelvic Extension: Report of Two Cases
2
作者 Kyousuke Takeuchi Ai Yoshida +2 位作者 Makoto Sugimoto masayuki fujita Hiroki Morita 《Open Journal of Obstetrics and Gynecology》 2022年第2期147-153,共7页
Background: Xanthogranulomatous inflammation of the female reproductive organs is a rare chronic inflammation. In most reported cases, the lesion was limited to the endometrium and fallopian tubes. Here, we report two... Background: Xanthogranulomatous inflammation of the female reproductive organs is a rare chronic inflammation. In most reported cases, the lesion was limited to the endometrium and fallopian tubes. Here, we report two cases of xanthogranulomatous inflammation of the myometrium with a history of endometrial biopsy. Case Reports: In two cases, myometrial xanthogranulomatous inflammation destroyed the myometrium. This inflammation developed into surrounding pelvic organs, resulting in uterine perforation. Conclusion: When inflammatory lesions are found after intrauterine manipulation, the possibility of developing xanthogranulomatous inflammation should be considered. If antibiotics are ineffective, prompt surgical treatment is necessary. 展开更多
关键词 Xanthogranulomatous Inflammation MYOMETRIUM Klebsiella Pneumoniae Surgical Intervention Endometrial Biopsy
下载PDF
Potassium-Induced Regulation of Cellular Antioxidant Defense and Improvement of Physiological Processes in Wheat under Water Deficit Condition 被引量:2
3
作者 Abdul Awal Chowdhury Masud MdFazlul Karim +4 位作者 M.H.M.Borhannuddin Bhuyan Jubayer Al Mahmud Kamrun Nahar masayuki fujita Mirza Hasanuzzaman 《Phyton-International Journal of Experimental Botany》 SCIE 2021年第2期353-372,共20页
Drought is the most common form of abiotic stress that reduces plant growth and productivity.It causes plant injuries through elevated production of reactive oxygen species(ROS).Potassium(K)is a vital plant nutrient t... Drought is the most common form of abiotic stress that reduces plant growth and productivity.It causes plant injuries through elevated production of reactive oxygen species(ROS).Potassium(K)is a vital plant nutrient that notably ameliorates the detrimental effect of drought stress in the plant.A pot experiment was conducted at the Laboratory of Plant Stress Responses,Faculty of Agriculture,Kagawa University,Japan,under controlled environment of green house to explore the role of K in mitigating drought severity in wheat(Triticum asevitum L.)seedlings.Three days after germination,seedlings were exposed to three water regimes viz.,100,50,and 20%field capacity(FC)for 21 days.Potassium was adjusted in Hoagland nutrient solution at 0,6 and 12 mM concentration and applied to pot instead of normal water.Results show that,water deficit stress notably reduced plant growth,biomass accumulation,leaf relative water content(RWC)along with reduced photosynthetic pigments.Increased amount of biochemical stress markers viz.,malondialdehyde(MDA),hydrogen peroxide(H_(2)O_(2)),methylglyoxal(MG),proline(Pro)as well as an impaired antioxidant defense system were observed in drought affected wheat plants.On the contrary,K supplementation resulted in improvement of biochemical and physiological parameters that worked behind in improving growth and development of the wheat plants.In addition,enzymes of ascorbateglutathione(AsA-GSH)cycle were also enhanced by supplemented K that accelerated the ROS detoxification process in plant.Although glyoxalse system did not performed well till MG was detoxified might following another short stepped pathways.Our results revealed that drought stressed plants showed better performances in terms of biochemical and physiological attributes,antioxidant defense and glyoxalase system,as well as ROS detoxification due to K supplementation with better performance at 12 mM K added in 50%FC growing condition. 展开更多
关键词 Abiotic stress DROUGHT plant nutrient relative water content reactive oxygen species ANTIOXIDANT H_(2)O_(2) METHYLGLYOXAL
下载PDF
Targeting Glycinebetaine for Abiotic Stress Tolerance in Crop Plants:Physiological Mechanism,Molecular Interaction and Signaling 被引量:2
4
作者 Mirza Hasanuzzaman Aditya Banerjee +3 位作者 M.H.M.Borhannuddin Bhuyan Aryadeep Roychoudhury Jubayer Al Mahmud masayuki fujita 《Phyton-International Journal of Experimental Botany》 SCIE 2019年第3期185-221,共37页
In the era of climate change,abiotic stresses(e.g.,salinity,drought,extreme temperature,flooding,metal/metalloid(s),UV radiation,ozone,etc.)are considered as one of the most complex environmental constraints that rest... In the era of climate change,abiotic stresses(e.g.,salinity,drought,extreme temperature,flooding,metal/metalloid(s),UV radiation,ozone,etc.)are considered as one of the most complex environmental constraints that restricts crop production worldwide.Introduction of stress-tolerant crop cultivars is the most auspicious way of surviving this constraint,and to produce these types of tolerant crops.Several bioengineering mechanisms involved in stress signaling are being adopted in this regard.One example of this kind of manipulation is the osmotic adjustment.The quarternary ammonium compound glycinebetaine(GB),also originally referred to as betaine is a methylated glycine derivative.Among the betaines,GB is the most abundant one in plants,which is mostly produced in response to dehydration caused by different abiotic stresses like drought,salinity,and extreme temperature.Glycinebetaine helps in decreased accumulation and detoxification of ROS,thereby restoring photosynthesis and reducing oxidative stress.It takes part in stabilizing membranes and macromolecules.It is also involved in the stabilization and protection of photosynthetic components,such as ribulose-1,5-bisphosphate carboxylase/oxygenase,photosystem II and quarternary enzyme and protein complex structures under environmental stresses.Glycinebetaine was found to perform in chaperone-induced protein disaggregation.In addition,GB can confer stress tolerance in very low concentrations,and it acts in activating defense responsive genes with stress protection.Recently,field application of GB has also shown protective effects against environmental adversities increasing crop yield and quality.In this review,we will focus on the role of GB in conferring abiotic stress tolerance and the possible ways to engineer GB biosynthesis in plants. 展开更多
关键词 OSMOLYTES compatible solutes biostimulants PROLINE amino acids stress signaling
下载PDF
Noise Reduction in White Light Lidar Signal Using a One-Dim and Two-Dim Daubechies Wavelet Shrinkage Method
5
作者 Toshihiro Somekawa Maria Cecilia D. Galvez +2 位作者 masayuki fujita Edgar A. Vallar Chihiro Yamanaka 《Advances in Remote Sensing》 2013年第1期10-15,共6页
A 1-D and 2-D Daubechies 5 (db5) discrete wavelet shrinkage methods using a 10 level decomposition was applied to white light lidar data particularly at 350 nm and 550 nm backscattered signal. At 350 nm, the backscatt... A 1-D and 2-D Daubechies 5 (db5) discrete wavelet shrinkage methods using a 10 level decomposition was applied to white light lidar data particularly at 350 nm and 550 nm backscattered signal. At 350 nm, the backscattered signal is very weak as compared to 550 nm backscattered signal because of the spectral intensity distribution of the generated white light. The 1-D and 2-D wavelet shrinkage method gave a much better result as compared with the moving average method. However, the 2-D wavelet shrinkage method produced a much better denoised lidar signal compared with the 1-D wavelet shrinkage method. This is indicated by the 142% increase in correlation coefficient between the 2-D denoised lidar signal and the 800 nm original lidar signal as compared with only 12% increase in correlation coefficient for the 1-D denoised lidar signal. The 2-D wavelet shrinkage method also gave a much higher SNR value of 65.9 compared to 1-D which is 38.8. 展开更多
关键词 WHITE Light LIDAR MULTI-WAVELENGTH WAVELET Daubechies
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部