SiO2-CaO-MgO glass and glass-ceramic powder doped with Nd3+ were synthesized with sol-gel method. Tetraethylorthosilicate (TEOS), Ca(NO3)2?4H2O, Mg(NO3)2?6H2O, Nd(NO3)3?6H2O, ethanol, distilled water, and ...SiO2-CaO-MgO glass and glass-ceramic powder doped with Nd3+ were synthesized with sol-gel method. Tetraethylorthosilicate (TEOS), Ca(NO3)2?4H2O, Mg(NO3)2?6H2O, Nd(NO3)3?6H2O, ethanol, distilled water, and HNO3 were used as starting materials. The synthesized powder’s properties were examined with simultaneous thermal analysis (STA), X-ray diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM) analysis. The STA curves showed that the softening point and crystallization temperatures were shifted to higher temperatures with increasing dopant content. Regarding XRD patterns of glass samples, Nd was found to act as an intermediate oxide in glass matrix. The XRD patterns of glass-ceramic samples indicated that bredigite and akermanite crystallized in the glass matrix after heat treating at 900 oC. The fluorescence spectra showed that glass-ceramics emitted much stronger irradiation than glasses with the same dopant content. The SEM images illustrated uniform and homogeneous distribution of applied oxides in glass and glass-ceramic compositions.展开更多
基金supported by the Iran Nanotechnology Initiative Council(INIC)
文摘SiO2-CaO-MgO glass and glass-ceramic powder doped with Nd3+ were synthesized with sol-gel method. Tetraethylorthosilicate (TEOS), Ca(NO3)2?4H2O, Mg(NO3)2?6H2O, Nd(NO3)3?6H2O, ethanol, distilled water, and HNO3 were used as starting materials. The synthesized powder’s properties were examined with simultaneous thermal analysis (STA), X-ray diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM) analysis. The STA curves showed that the softening point and crystallization temperatures were shifted to higher temperatures with increasing dopant content. Regarding XRD patterns of glass samples, Nd was found to act as an intermediate oxide in glass matrix. The XRD patterns of glass-ceramic samples indicated that bredigite and akermanite crystallized in the glass matrix after heat treating at 900 oC. The fluorescence spectra showed that glass-ceramics emitted much stronger irradiation than glasses with the same dopant content. The SEM images illustrated uniform and homogeneous distribution of applied oxides in glass and glass-ceramic compositions.