期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Influence of Climate Variability on the Watermelon Production in Zanzibar
1
作者 Asya Omar Hamad Kombo Hamad Kai +5 位作者 Agnes Kijazi Sara Abdalla Khamis Abdalla Hassan Abdalla Hassan Khatib Ame masoud makame faki faki Ali Ali 《Atmospheric and Climate Sciences》 CAS 2023年第1期44-61,共18页
Climate change and variability, has embarked societies in Zanzibar to rely on horticulture (i.e. watermelon production) as an adaptive measure due to an unpromising situation of commonly used agricultural yields. Curr... Climate change and variability, has embarked societies in Zanzibar to rely on horticulture (i.e. watermelon production) as an adaptive measure due to an unpromising situation of commonly used agricultural yields. Currently, there is either no or scant information that describes the influence of climate changes and variability to watermelon production in Zanzibar. Thus, this study aimed to determine the influence of climate variability on the quantity of watermelon production in Zanzibar. The study used both primary and secondary datasets, which include the anecdotal information collected from interviewers’ responses from four districts of Unguja and Pemba, and climate parameters (rainfall, maximum and minimum temperature (Tmax and Tmin) acquired from Tanzania Meteorological Authority (TMA) at Zanzibar offices. Pearson correlation was used for analyzing the association between watermelon production and climate parameters, while paired t-test was applied to show the significance of the mean differences of watermelon and climate parameters for two periods of 2014-2017 and 2018-2021, respectively. Percentage changes were used to feature the extent to which the two investigated parameters affect each other. The anecdotal responses were sorted, calculated in monthly and seasonal averages, plotted and then analyzed. Results have shown a strong correlation (r = 0.8 at p ≤ 0.02, and r = 0.7) between watermelon production, Tmax and rainfall during OND, especially in Unguja, as well as Tmin during JJA (i.e. r = - 0.8 at p ≤ 0.02) in Pemba. Besides, results have shown the existence of significant differences between the means of watermelon production and climate parameter for the two stated periods, indicating that the climate parameters highly affects the watermelon production by either enhancing or declining the yields by 69% - 162% and 17% - 77%, respectively. Moreover, results have shown that respondents were aware that excess temperature intensity during dry periods can lead to high production costs due number of soil and other environmental factors. Besides the results have shown that OND seasonal rainfall and MAM Tmax had good association with watermelon production in Unguja while JJA Tmin declined the production in Pemba. Thus, the study concludes that seasonal variability of climate parameter has a significant influence on the watermelon production. The study calls for more studies on factors affecting watermelon production (e.g. soil characteristics, pest sides and manure), and recommends for climate based decision making on rain fed agricultural yields and routine monitoring of weather information. 展开更多
关键词 WATERMELON March to May (MAM) and October to November (OND) Seasonal Rainfall Maximum and Minimum Temperature Anecdotal Information
下载PDF
Rainfall Variability over Tanzania during October to December and Its Association with Sea Surface Temperature (SST) 被引量:1
2
作者 Hassan Khatib Ame Agnes Lawrence Kijazi +5 位作者 Ladislaus Benedict Changa Kantamla Biseke Mafuru Mohamed Khamis Ngwali masoud makame faki Asya Omar Hmad Miraji Khamis Miraji 《Atmospheric and Climate Sciences》 2021年第2期324-341,共18页
The current study examines the interannual rainfall variability and its associated atmospheric circulation in Tanzania during October-December (OND) rainfall season based on 1974 to 2010 climatology. The Empirical Ort... The current study examines the interannual rainfall variability and its associated atmospheric circulation in Tanzania during October-December (OND) rainfall season based on 1974 to 2010 climatology. The Empirical Orthogonal Function (EOF), composite and correlation analysis were used in this study. Years with enhanced precipitation are found to be associated with the low level moist and unstable wind from Congo basin which organizes and forms a confluent zone, an inter tropical convergence zone (ITCZ) extending from Congo to northern sector of the country. It however, characterizes low-level westerly moisture flux transport sourced from Congo basin, ascending limb of the local Indian Ocean Walker circulation over East Africa which enhances convection for wetness condition. Wet years are also coupled with the positive Indian Ocean Dipole (IOD) and the warm phase of the El Nino Southern Oscillation (ENSO) condition. On the spatial scale, both the IOD and ENSO indices are well correlated with OND rains over the bimodal areas (Lake Victoria basin, North Eastern Highlands (NEH), and northern coast) with strong correlation being to the NEH. Strong temporal correlation is revealed between the OND rains and IOD (r = 0.6304) compared to ENSO (r = 0.5538) indicating that anomalous warming over the western Indian Ocean has a faster response to OND rains in Tanzania than the remote influence induced by anomalous warming from the central Pacific Ocean. The patterns associated with dry years are found to be linked with the low-level divergence accompanied by convergence in the upper level. This condition enhances continuous descending motion accompanied with suppression in rainfall activities. Dry years are also associated with negative IOD, cold phase of ENSO condition, descending limb of the Walker Circulation and significant reduction in the westerly moisture flux transport sourced from Congo basin towards the western sector and Lake Victoria basin. 展开更多
关键词 OND Rainfall Empirical Orthogonal Function CORRELATION Tanzania
下载PDF
Assessment of the Impacts of Tropical Cyclone Fantala to Tanzania Coastal Line: Case Study of Zanzibar 被引量:6
3
作者 Kombo Hamad Kai Mohammed Khamis Ngwali masoud makame faki 《Atmospheric and Climate Sciences》 2021年第2期245-266,共22页
The study investigated the impacts of tropical cyclone (TC) Fantala (11<sup>th</sup> to 27<sup>th</sup> April, 2016) to the coastal areas of Tanzania, Zanzibar in particular. Daily reanalysis d... The study investigated the impacts of tropical cyclone (TC) Fantala (11<sup>th</sup> to 27<sup>th</sup> April, 2016) to the coastal areas of Tanzania, Zanzibar in particular. Daily reanalysis data consisting of wind speed, sea level pressure (SLP), sea surface temperatures (SSTs) anomaly, and relative humidity from the National Centres for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) were used to analyze the variation in strength of Fantala as it was approaching the Tanzania coastal line. In addition observed rainfall from Tanzania Meteorological Authority (TMA) at Zanzibar office, Global Forecasting System (GFS) rainfall estimates and satellite images were used to visualize the impacts of tropical cyclone Fantala to Zanzibar. The results revealed that, TC Fantala was associated with deepening/decreasing in SLP (from 1012 - 1010 mb) around the north-western Madagascar and coastal Tanzania, whereas the mean SSTs was greater than 28<span style="white-space:nowrap;">&deg;</span>C and an SSTs anomaly ranged from 0 to 2.3<span style="white-space:nowrap;">&deg;</span>C. The vertical wind shear which ridged at Mozambican Channel and over north-eastern Madagascar was high enough (12 - 15 ms<sup>-1</sup>) to support the intensifying of Fantala. The thermodynamic and dynamic conditions of Fantala influenced heavy rainfall of greater than 170 mm over most stations in Zanzibar. Moreover, Fantala disrupted the temporal variability of 2016 March to May (MAM) seasonal rainfall. Besides, more than 420 people were homeless, at least 3330 houses were destroyed, and about 2 people died. As for mainland Tanzania Fantala resulted in a death of 12 people in Kilimanjaro and Arusha, more than 315 houses were washed away by flooding leading to 13,933 people being homeless. Conclusively the study calls for an extensive research work based on examining and forecasting the TCs rainfall impacts and their contribution during the two rainfall seasons of OND and MAM in Tanzania. 展开更多
关键词 Tropical Cyclone Fantala Sea Surface Temperatures (SSTs) Dynamics and Thermodynamics Forecasting Systems and MAM Seasonal Rainfall VORTICITY Wind Shear Vertical Profile
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部