A new compressive testing apparatus is developed and used in this research. It has long gauge length to allow digital image correlation monitoring and anti buckling guides to prevent buckling. It allows the optical re...A new compressive testing apparatus is developed and used in this research. It has long gauge length to allow digital image correlation monitoring and anti buckling guides to prevent buckling. It allows the optical recording of strains and displacements. The novel setup is used to study the compressive response of tufted and untufted Carbon non crimp fabric composites with full field measurements. Experimental results show that the specimens are not bending in the apparatus under compression. Results also show reduced strain concentrations and a large strain field that provides a good environment for material compressive stiffness characterization. The test proves particularly successful for bias direction layup of [+45/-45] for which large damage mechanism occurs. However for [0/90] specimens a scatter in compressive ultimate strength was noticed which is due to the difficulty to prepare specimens with best minute accurate geometry. The compressive apparatus has shown to be a good alternative to existing setups and to provide significantly more information as well as having the possibility to be used in dynamics with a drop tower.展开更多
文摘A new compressive testing apparatus is developed and used in this research. It has long gauge length to allow digital image correlation monitoring and anti buckling guides to prevent buckling. It allows the optical recording of strains and displacements. The novel setup is used to study the compressive response of tufted and untufted Carbon non crimp fabric composites with full field measurements. Experimental results show that the specimens are not bending in the apparatus under compression. Results also show reduced strain concentrations and a large strain field that provides a good environment for material compressive stiffness characterization. The test proves particularly successful for bias direction layup of [+45/-45] for which large damage mechanism occurs. However for [0/90] specimens a scatter in compressive ultimate strength was noticed which is due to the difficulty to prepare specimens with best minute accurate geometry. The compressive apparatus has shown to be a good alternative to existing setups and to provide significantly more information as well as having the possibility to be used in dynamics with a drop tower.