期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于随机森林算法的多作物同步识别 被引量:7
1
作者 许淇 李启亮 +2 位作者 mathilde de vroey 张吴平 范锦龙 《山东农业科学》 2019年第3期135-139,共5页
作物类型遥感识别是农业遥感的重要组成部分,为获取作物种植面积、长势信息并进行产量估算提供了手段。目前,对玉米、水稻和小麦等大宗农作物进行单一识别或两类间分类识别的技术研究较多,对研究区多种农作物同步分类识别的研究较少。... 作物类型遥感识别是农业遥感的重要组成部分,为获取作物种植面积、长势信息并进行产量估算提供了手段。目前,对玉米、水稻和小麦等大宗农作物进行单一识别或两类间分类识别的技术研究较多,对研究区多种农作物同步分类识别的研究较少。本研究基于随机森林分类器利用Landsat 8数据开展宁夏农作物分类,对八种主要农作物春小麦、玉米、水稻、苜蓿、蔬菜、葡萄、枸杞和瓜类进行同步分类试验。结果表明:随机森林方法可以满足研究区内多类作物同步监测的需求,精度可达80%以上。单时相分类精度可达到81.8%,后分类处理精度可达到82.8%,时间序列分类精度可达到85.1%,时间序列分类和后分类处理可以有效提高分类精度。随机森林分类精度随着树数量的增加而增大,当树的数量足够多时,模型趋于稳定,特征变量对精度的影响被控制在一定范围内,当特征变量设置为总特征变量的平方根或对数时,精度达到最佳。因此,基于对分类实验时效性的考虑,将参数分别设置为Ntree=100,Mtry=总特征变量的平方根或对数。 展开更多
关键词 随机森林 多作物识别 分类后处理 单时相 时间序列
下载PDF
Sent2Agri System Based Crop Type Mapping in Yellow River Irrigation Area 被引量:2
2
作者 Jinlong FAN Pierre deFOURNY +7 位作者 Qinghan DONG Xiaoyu ZHANG mathilde de vroey Nicolas BELLEMANS Qi XU Qiliang LI Lei ZHANG Hao GAO 《Journal of Geodesy and Geoinformation Science》 2020年第4期110-117,共8页
Agricultural monitoring is essential for adequate management of food production and distribution.Crop land and crop type classification,using remote sensing time series,form an important tool to capture the agricultur... Agricultural monitoring is essential for adequate management of food production and distribution.Crop land and crop type classification,using remote sensing time series,form an important tool to capture the agricultural production information.The recently launched Sentinel-2 satellites provide unprecedented monitoring capacities in terms of spatial resolution,swath width,and revisit frequency.The Sentinel-2 for Agriculture(Sen2-Agri)system has been developed to fully exploit those capacities,by providing four relevant earth observation products for agricultural monitoring.Under the Dragon 4 Program,the crop mapping with various satellite images and a specific focus on the Yellow River irrigated agricultural area in the Ningxia Hui Autonomous Region in China was carried out with the Sentinel-2 for Agriculture system(Sent2Agri).9 types of crops were classified and the crop type map in 2017 was produced based on 35 scenes Sentinel 2A/B images.The overall accuracy computed from the error confusion matrix is 88%,which includes the cropped and uncropped types.After the removal of the uncropped area,the overall accuracy for a cropped decrease to 73%.In order to further improve the crop classification accuracy,the training dataset should be further improved and tuned. 展开更多
关键词 crop mapping Dragon Program Sentinel 2 Sent2Agri system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部