We present a probe factor for a simple measurement device, which can be used to determine in-situ electrical resistivity in soils or other penetrable bodies. The probe is primarily sensitive to the material immediatel...We present a probe factor for a simple measurement device, which can be used to determine in-situ electrical resistivity in soils or other penetrable bodies. The probe is primarily sensitive to the material immediately surrounding it and therefore is ideal for determining localized conductivities. The geometry of the probe can be scaled to effectively adjust the region of interest. The calibration, or “probe factor” is a function of the geometry, as well as the electrode configuration. Results are presented assuming a Wenner array configuration, however they can easily be extended to other geometries, such as the Schlumberger or dipole-dipole array.展开更多
文摘We present a probe factor for a simple measurement device, which can be used to determine in-situ electrical resistivity in soils or other penetrable bodies. The probe is primarily sensitive to the material immediately surrounding it and therefore is ideal for determining localized conductivities. The geometry of the probe can be scaled to effectively adjust the region of interest. The calibration, or “probe factor” is a function of the geometry, as well as the electrode configuration. Results are presented assuming a Wenner array configuration, however they can easily be extended to other geometries, such as the Schlumberger or dipole-dipole array.