The size fractionation of magnetic nanoparticles is a technical problem,which until today can only be solved with great effort.Nevertheless,there is an important demand for nanoparticles with sharp size distributions,...The size fractionation of magnetic nanoparticles is a technical problem,which until today can only be solved with great effort.Nevertheless,there is an important demand for nanoparticles with sharp size distributions,for example for medical technology or sensor technology.Using magnetic chromatography,we show a promising method for fractionation of magnetic nanoparticles with respect to their size and/or magnetic properties.This was achieved by passing magnetic nanoparticles through a packed bed of fine steel spheres with which they interact magnetically because single domain ferro-/ferrimagnetic nanoparticles show a spontaneous magnetization.Since the strength of this interaction is related to particle size,the principle is suitable for size fractionation.This concept was transferred into a continuous process in this work using a so-called simulated moving bed chromatography.Applying a suspension of magnetic nanoparticles within a size range from 20 to 120 nm,the process showed a separation sharpness of up to 0.52 with recovery rates of 100%.The continuous feed stream of magnetic nanoparticles could be fractionated with a space-time-yield of up to 5 mg/(L∙min).Due to the easy scalability of continuous chromatography,the process is a promising approach for the efficient fractionation of industrially relevant amounts of magnetic nanoparticles.展开更多
基金the Deutsche Forschungsgemeinschaft(DFG)within the priority program SPP 2045(Project C11,Grant-Nr.FR 2131/6-1 and Project Z1,Grant-Nr.RA1050/25-1).
文摘The size fractionation of magnetic nanoparticles is a technical problem,which until today can only be solved with great effort.Nevertheless,there is an important demand for nanoparticles with sharp size distributions,for example for medical technology or sensor technology.Using magnetic chromatography,we show a promising method for fractionation of magnetic nanoparticles with respect to their size and/or magnetic properties.This was achieved by passing magnetic nanoparticles through a packed bed of fine steel spheres with which they interact magnetically because single domain ferro-/ferrimagnetic nanoparticles show a spontaneous magnetization.Since the strength of this interaction is related to particle size,the principle is suitable for size fractionation.This concept was transferred into a continuous process in this work using a so-called simulated moving bed chromatography.Applying a suspension of magnetic nanoparticles within a size range from 20 to 120 nm,the process showed a separation sharpness of up to 0.52 with recovery rates of 100%.The continuous feed stream of magnetic nanoparticles could be fractionated with a space-time-yield of up to 5 mg/(L∙min).Due to the easy scalability of continuous chromatography,the process is a promising approach for the efficient fractionation of industrially relevant amounts of magnetic nanoparticles.