期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Residual Stress and Fracture Toughness Study in A516 Gr70 Steel Joints Welded and Repaired by Arc Processes
1
作者 Régis de Matos Curvelo de Barros mauricio david martins das neves 《Engineering(科研)》 2023年第11期749-758,共10页
Structural components made of steel are used in several areas and require welding for assembly. In some situations, repair of the weld bead, also performed by electric arc welding, can be used to correct, and eliminat... Structural components made of steel are used in several areas and require welding for assembly. In some situations, repair of the weld bead, also performed by electric arc welding, can be used to correct, and eliminate any discontinuities. However, electric arc welding causes the presence of residual stresses in the joint, which can impair its performance and not meet specific design requirements. In this paper, welded joints made of ASTM A 516 GR 70 steel plates, with a thickness of 30.5 mm, welded by the MAG—Metal Active Gas process (20% CO<sub>2</sub>) and using a “K” groove were analysed. The joints were manufactured with seven welding passes on each side of the groove. After welding, one batch underwent repair of the bead by TIG welding (Tungsten Insert Gas) and another batch underwent two repairs by TIG welding. Were presented results of the behaviour of the residual stress profile measured by X-ray diffraction and the Vickers microhardness profile in the joints as well the fracture toughness in the conditions only welded and submitted to repairs. The results indicated that the greater number of repair passes reduced the residual compressive stress values obtained in the material manufacturing process and caused a stabilization on the Vickers hardness values. It was concluded that compressive residual stresses did not play a major role in the R-curve results. The presence of discontinuities in the welded joint caused greater influence on the behaviour of the R curve. 展开更多
关键词 Weld Repair Weld Fatigue Weld J Integral Residual Stress Microharness
下载PDF
Characteristics of Biometallic Alloy to Additive Manufacturing Using Selective Laser Melting Technology
2
作者 Marcello Vertamatti Mergulhao mauricio david martins das neves 《Journal of Biomaterials and Nanobiotechnology》 2018年第1期89-99,共11页
Biomaterial powders are in high development due to expansion of additive manufacturing (AM) processes. Selective laser melting (SLM) is a particular AM technology, which completely melts a powder bed layer by laser be... Biomaterial powders are in high development due to expansion of additive manufacturing (AM) processes. Selective laser melting (SLM) is a particular AM technology, which completely melts a powder bed layer by laser beam. Investigations of appropriated physical properties of feedstock (powder alloy) were the aim of this study. Cobalt-chromium-molybdenum (Co-Cr-Mo) alloy was used to overview of gas-atomized powder properties in different granulometric ranges (D1 12 - 19 μm, D2 20 - 46 μm and D3 76 - 106 μm), as their: physical, chemical properties and thermal analysis. SLM manufactured standard tensile specimens of usually granulometric range powder size provided mechanical, chemical and thermal properties of biocompatible Co-Cr-Mo alloy. The physical properties showed that powders in the range of 20 to 50 μm provide a better flow ability and packed density, which are relevant characteristics to SLM processing. Manufacturing by SLM process provided suitable mechanical properties in the health area, as well as, maintained the biocompatible properties of the Co-Cr-Mo alloy. 展开更多
关键词 Biomaterial Co-Cr-Mo Alloy Powder Alloy Additive Manufacturing Selective Laser Melting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部