期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis of three-dimensional effects in laser driven thin-shell capsule implosions 被引量:1
1
作者 Rafael Ramis Benoit Canaud +2 位作者 mauro temporal Warren J.Garbett Franck Philippe 《Matter and Radiation at Extremes》 SCIE CAS 2019年第5期55-66,共12页
Three-dimensional(3D)hydrodynamic numerical simulations of laser driven thin-shell gas-filled microballoons have been carried out using the computer code MULTI-3D[Ramis et al.,Phys.Plasmas 21,082710(2014)].The studied... Three-dimensional(3D)hydrodynamic numerical simulations of laser driven thin-shell gas-filled microballoons have been carried out using the computer code MULTI-3D[Ramis et al.,Phys.Plasmas 21,082710(2014)].The studied configuration corresponds to experiments carried at the ORION laser facility[Hopps et al.,Plasma Phys.Controlled Fusion 57,064002(2015)].The MULTI-3D code solves single-temperature hydrodynamics,electron heat transport,and 3D ray tracing with inverse bremsstrahlung absorption on unstructured Lagrangian grids.Special emphasis has been placed on the genuine 3D effects that are inaccessible to calculations using simplified 1D or 2D geometries.These include the consequences of(i)a finite number of laser beams(10 in the experimental campaign),(ii)intensity irregularities in the beam crosssectional profiles,(iii)laser beam misalignments,and(iv)power imbalance between beams.The consequences of these imperfections have been quantified by post-processing the numerical results in terms of capsule nonuniformities(synthetic emission and absorption images)and implosion efficiency(convergence ratio and neutron yield).Statistical analysis of these outcomes allows determination of the laser tolerances that guarantee a given level of target performance. 展开更多
关键词 consequences ABSORPTION DIMENSIONAL
下载PDF
Irradiation uniformity at the Laser MegaJoule facility in the context of the shock ignition scheme 被引量:4
2
作者 mauro temporal Benoit Canaud +2 位作者 Warren J. Garbett Rafael Ramis Stefan Weber 《High Power Laser Science and Engineering》 SCIE CAS 2014年第2期1-12,共12页
The use of the Laser MegaJoule facility within the shock ignition scheme has been considered. In the first part of the study, one-dimensional hydrodynamic calculations were performed for an inertial confinement fusion... The use of the Laser MegaJoule facility within the shock ignition scheme has been considered. In the first part of the study, one-dimensional hydrodynamic calculations were performed for an inertial confinement fusion capsule in the context of the shock ignition scheme providing the energy gain and an estimation of the increase of the peak power due to the reduction of the photon penetration expected during the high-intensity spike pulse. In the second part, we considered a Laser MegaJoule configuration consisting of 176 laser beams that have been grouped providing two different irradiation schemes. In this configuration the maximum available energy and power are 1.3 MJ and 440 TW. Optimization of the laser–capsule parameters that minimize the irradiation non-uniformity during the first few ns of the foot pulse has been performed. The calculations take into account the specific elliptical laser intensity profile provided at the Laser MegaJoule and the expected beam uncertainties. A significant improvement of the illumination uniformity provided by the polar direct drive technique has been demonstrated. Three-dimensional hydrodynamic calculations have been performed in order to analyse the magnitude of the azimuthal component of the irradiation that is neglected in twodimensional hydrodynamic simulations. 展开更多
关键词 INERTIAL CONFINEMENT fusion shock IGNITION LASER system
原文传递
Optimal laser intensity profiles for a uniform target illumination in direct-drive inertial confinement fusion 被引量:1
3
作者 mauro temporal Benoit Canaud +1 位作者 Warren J.Garbett Rafael Ramis 《High Power Laser Science and Engineering》 SCIE CAS 2014年第4期62-67,共6页
A numerical method providing the optimal laser intensity profiles for a direct-drive inertial confinement fusion scheme has been developed. The method provides an alternative approach to phase-space optimization studi... A numerical method providing the optimal laser intensity profiles for a direct-drive inertial confinement fusion scheme has been developed. The method provides an alternative approach to phase-space optimization studies, which can prove computationally expensive. The method applies to a generic irradiation configuration characterized by an arbitrary number NBof laser beams provided that they irradiate the whole target surface, and thus goes beyond previous analyses limited to symmetric configurations. The calculated laser intensity profiles optimize the illumination of a spherical target.This paper focuses on description of the method, which uses two steps: first, the target irradiation is calculated for initial trial laser intensities, and then in a second step the optimal laser intensities are obtained by correcting the trial intensities using the calculated illumination. A limited number of example applications to direct drive on the Laser Mega Joule(LMJ) are described. 展开更多
关键词 direct DRIVE INERTIAL CONFINEMENT fusion laser system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部