Phase imaging coupled to micro-tomography acquisition has emerged as a powerful tool to investigate specimens in a non-destructive manner. While the intensity data can be acquired and recorded, the phase information o...Phase imaging coupled to micro-tomography acquisition has emerged as a powerful tool to investigate specimens in a non-destructive manner. While the intensity data can be acquired and recorded, the phase information of the signal has to be “retrieved” from the data modulus only. Phase retrieval is an ill-posed non-linear problem and regularization techniques including a priori knowledge are necessary to obtain stable solutions. Several linear phase recovery methods have been proposed and it is expected that some limitations resulting from the linearization of the direct problem will be overcome by taking into account the non-linearity of the phase problem. To achieve this goal, we propose and evaluate a non-linear algorithm for in-line phase micro-tomography based on an iterative Landweber method with an analytic calculation of the Fréchet derivative of the phase-intensity relationship and of its adjoint. The algorithm was applied in the projection space using as initialization the linear mixed solution. The efficacy of the regularization scheme was evaluated on simulated objects with a slowly and a strongly varying phase. Experimental data were also acquired at ESRF using a propagation-based X-ray imaging technique for the given pixel size 0.68 μm. Two regularization scheme were considered: first the initialization was obtained without any prior on the ratio of the real and imaginary parts of the complex refractive index and secondly a constant a priori value was assumed on ?. The tomographic central slices of the refractive index decrement were compared and numerical evaluation was performed. The non-linear method globally decreases the reconstruction errors compared to the linear algorithm and is achieving better reconstruction results if no prior is introduced in the initialization solution. For in-line phase micro-tomography, this non-linear approach is a new and interesting method in biomedical studies where the exact value of the a priori ratio is not known.展开更多
The building industry is one of the main contributors to worldwide resource consumption and anthropogenic climate change.Therefore,sustainable solutions in construction are particularly urgent.Inspired by the success ...The building industry is one of the main contributors to worldwide resource consumption and anthropogenic climate change.Therefore,sustainable solutions in construction are particularly urgent.Inspired by the success principles of living nature,biologists and engineers present here an interdisciplinary work:The sustainability assessment of a bio-inspired material technology called graded concrete,which was developed at ILEK.Gradient structural materials can be found in plants on different hierarchical levels,providing a multitude of creative solutions for technology.Graded concrete applies this biological concept of structural optimization to the interior structure of concrete components to minimize material and resource expenditure.To evaluate the sustainability of this innovation,a newly developed quantitative Bio-inspired Sustainability Assessment(BiSA)method is applied.It focuses on the relationship of environmental,social and economic functions and the corresponding burdens quantified basing on life cycle assessment.The BiSA of graded concrete slabs shows significant improvements over conventional concrete for the applied use case.While an overall reduction of environmental burdens by 13%is expected,economic burdens can be reduced by up to 40%and social burdens by 35.7%.The assessment of the graded concrete technology identifies its potential with regard to sustainable construction.The presented work provides a blueprint for the interdisciplinary,integrative work on sustainable,bio-inspired innovations.It shows that the synergies of bio-inspiration and BiSA within technical product development can be fruitful.展开更多
文摘Phase imaging coupled to micro-tomography acquisition has emerged as a powerful tool to investigate specimens in a non-destructive manner. While the intensity data can be acquired and recorded, the phase information of the signal has to be “retrieved” from the data modulus only. Phase retrieval is an ill-posed non-linear problem and regularization techniques including a priori knowledge are necessary to obtain stable solutions. Several linear phase recovery methods have been proposed and it is expected that some limitations resulting from the linearization of the direct problem will be overcome by taking into account the non-linearity of the phase problem. To achieve this goal, we propose and evaluate a non-linear algorithm for in-line phase micro-tomography based on an iterative Landweber method with an analytic calculation of the Fréchet derivative of the phase-intensity relationship and of its adjoint. The algorithm was applied in the projection space using as initialization the linear mixed solution. The efficacy of the regularization scheme was evaluated on simulated objects with a slowly and a strongly varying phase. Experimental data were also acquired at ESRF using a propagation-based X-ray imaging technique for the given pixel size 0.68 μm. Two regularization scheme were considered: first the initialization was obtained without any prior on the ratio of the real and imaginary parts of the complex refractive index and secondly a constant a priori value was assumed on ?. The tomographic central slices of the refractive index decrement were compared and numerical evaluation was performed. The non-linear method globally decreases the reconstruction errors compared to the linear algorithm and is achieving better reconstruction results if no prior is introduced in the initialization solution. For in-line phase micro-tomography, this non-linear approach is a new and interesting method in biomedical studies where the exact value of the a priori ratio is not known.
文摘The building industry is one of the main contributors to worldwide resource consumption and anthropogenic climate change.Therefore,sustainable solutions in construction are particularly urgent.Inspired by the success principles of living nature,biologists and engineers present here an interdisciplinary work:The sustainability assessment of a bio-inspired material technology called graded concrete,which was developed at ILEK.Gradient structural materials can be found in plants on different hierarchical levels,providing a multitude of creative solutions for technology.Graded concrete applies this biological concept of structural optimization to the interior structure of concrete components to minimize material and resource expenditure.To evaluate the sustainability of this innovation,a newly developed quantitative Bio-inspired Sustainability Assessment(BiSA)method is applied.It focuses on the relationship of environmental,social and economic functions and the corresponding burdens quantified basing on life cycle assessment.The BiSA of graded concrete slabs shows significant improvements over conventional concrete for the applied use case.While an overall reduction of environmental burdens by 13%is expected,economic burdens can be reduced by up to 40%and social burdens by 35.7%.The assessment of the graded concrete technology identifies its potential with regard to sustainable construction.The presented work provides a blueprint for the interdisciplinary,integrative work on sustainable,bio-inspired innovations.It shows that the synergies of bio-inspiration and BiSA within technical product development can be fruitful.