Constructing hetero-structured catalyst is promising but still challenging to achieve overall water splitting for hydrogen production with high efficiency.Herein,we developed a sulfide-based MoS_(2)/Co_(l-x)S@C hetero...Constructing hetero-structured catalyst is promising but still challenging to achieve overall water splitting for hydrogen production with high efficiency.Herein,we developed a sulfide-based MoS_(2)/Co_(l-x)S@C hetero-structure for highly efficient electrochemical hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The carbon derived from the filter paper acts as a conducting carrier to ensure adequate exposure of the active sites guaranteed with improved catalytic stability.The unique hierarchical nano-sheets facilitate the charge and ion transfer by shortening the diffusion path during electro-catalysis.Meanwhile,the robust hetero-interfaces in MoS_(2)/Co_(1-x)S@C can expose rich electrochemical active sites and facilitate the charge transfer,which further cooperates synergistically toward electro-catalytic reactions.Consequently,the optimal MoS_(2)/Co_(1-x)S@C hetero-structures present small over-potentials toward HER(135 mV@10 mA·cm^(-2))and OER(230 mV@10 mA·cm^(-2)).The MoS_(2)/Co_(1-x)S@C electrolyzer requires an ultralow voltage of 1.6 V at the current density of 10 mA·cm^(-2)with excellent durability,outperforming the state-of-the-art electro-catalysts.This work sheds light on the design of the hetero-structured catalysts with interfacial engineering toward large-scale water splitting.展开更多
基金supported by the National Natural Science Foundation of China(51871119,22075141,and 22101132)Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province(BK20220039)+3 种基金Jiangsu Provincial Founds for Natural Science Foundation(BK20180015 and BK20210311)China Postdoctoral Science Foundation(2021M691561 and 2021T140319)Jiangsu Postdoctoral Research Fund(2021K547C)the Fundamental Research Funds for the Central Universities(kfjj20180605)。
文摘Constructing hetero-structured catalyst is promising but still challenging to achieve overall water splitting for hydrogen production with high efficiency.Herein,we developed a sulfide-based MoS_(2)/Co_(l-x)S@C hetero-structure for highly efficient electrochemical hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The carbon derived from the filter paper acts as a conducting carrier to ensure adequate exposure of the active sites guaranteed with improved catalytic stability.The unique hierarchical nano-sheets facilitate the charge and ion transfer by shortening the diffusion path during electro-catalysis.Meanwhile,the robust hetero-interfaces in MoS_(2)/Co_(1-x)S@C can expose rich electrochemical active sites and facilitate the charge transfer,which further cooperates synergistically toward electro-catalytic reactions.Consequently,the optimal MoS_(2)/Co_(1-x)S@C hetero-structures present small over-potentials toward HER(135 mV@10 mA·cm^(-2))and OER(230 mV@10 mA·cm^(-2)).The MoS_(2)/Co_(1-x)S@C electrolyzer requires an ultralow voltage of 1.6 V at the current density of 10 mA·cm^(-2)with excellent durability,outperforming the state-of-the-art electro-catalysts.This work sheds light on the design of the hetero-structured catalysts with interfacial engineering toward large-scale water splitting.