期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Doped graphene/carbon black hybrid catalyst giving enhanced oxygen reduction reaction activity with high resistance to corrosion in proton exchange membrane fuel cells 被引量:2
1
作者 Zhaoqi Ji Jianuo Chen +6 位作者 María Pérez-Page Zunmin Guo Ziyu Zhao Rongsheng Cai maxwell t.p.rigby Sarah J.Haigh Stuart M.Holmes 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期143-153,共11页
Nitrogen doping of the carbon is an important method to improve the performance and durability of catalysts for proton exchange membrane fuel cells by platinum–nitrogen and carbon–nitrogen bonds. This study shows th... Nitrogen doping of the carbon is an important method to improve the performance and durability of catalysts for proton exchange membrane fuel cells by platinum–nitrogen and carbon–nitrogen bonds. This study shows that p-phenyl groups and graphitic N acting bridges linking platinum and the graphene/carbon black(the ratio graphene/carbon black = 2/3) hybrid support materials achieved the average size of platinum nanoparticles with(4.88 ± 1.79) nm. It improved the performance of the lower-temperature hydrogen fuel cell up to 0.934 W cm^(-2) at 0.60 V, which is 1.55 times greater than that of commercial Pt/C. Doping also enhanced the interaction between Pt and the support materials, and the resistance to corrosion, thus improving the durability of the low-temperature hydrogen fuel cell with a much lower decay of 10 mV at 0.80 A cm^(-2) after 30 k cycles of an in-situ accelerated stress test of catalyst degradation than that of 92 mV in Pt/C, which achieves the target of Department of Energy(<30 mV). Meanwhile,Pt/Nr EGO_(2)-CB_(3) remains 78% of initial power density at 1.5 A cm^(-2) after 5 k cycles of in-situ accelerated stress test of carbon corrosion, which is more stable than the power density of commercial Pt/C, keeping only 54% after accelerated stress test. 展开更多
关键词 Nitrogen doped graphene Low-temperature hydrogen fuel cell Catalyst degradation Carbon corrosion
下载PDF
Graphene/carbon structured catalyst layer to enhance the performance and durability of the high-temperature proton exchange membrane fuel cells
2
作者 Zhaoqi Ji Jianuo Chen +7 位作者 Zunmin Guo Ziyu Zhao Rongsheng Cai maxwell t.p.rigby Sarah J.Haigh Maria Perez-Page Yitao Shen Stuart M.Holmes 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期399-407,I0011,共10页
In this study,nitrogen doped electrochemically exfoliated reduced graphene oxide and carbon black supported platinum(Pt/Nr EGO_(2)-CB_(3))has been prepared to enhance the performance and durability of hightemperature ... In this study,nitrogen doped electrochemically exfoliated reduced graphene oxide and carbon black supported platinum(Pt/Nr EGO_(2)-CB_(3))has been prepared to enhance the performance and durability of hightemperature PEMFCs with lower Pt loading.On the one hand,Pt/Nr EGO_(2)-CB_(3)with the strong interaction between the Pt and nitrogen(N)prevent agglomeration of Pt particles and Pt particles is 5.46±1.46 nm,which is smaller than that of 6.78±1.34 nm in Pt/C.Meanwhile,ECSA of Pt/Nr EGO_(2)-CB_(3)decrease 13.65%after AST,which is much lower than that of 97.99%in Pt/C.On the other hand,the Nr EGO flakes in MEAac act as a barrier to mitigate phosphoric acid redistribution,which improves the formation of triple-phase boundaries(TPBs)and gives stable operation of the MEAacwith a lower decay rate of 0.02 mV h^(-1)within100 h.After steady-state operation,the maximum power density of Pt/Nr EGO_(2)-CB_(3)(0.411 W cm^(-2))is three times higher than that of conventional Pt/C(0.134 W cm^(-2))in high-temperature PEMFCs.After AST,the mass transfer resistance of Pt/Nr EGO_(2)-CB_(3)electrode(0.560Ωcm^(2))is lower than that in Pt/C(0.728Ωcm^(2)). 展开更多
关键词 High-temperature proton exchange membrane fuel cell Phosphoric acid loss Pt catalyst degradation Accelerated stress test DURABILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部