期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Zirconia quantum dots for a nonvolatile resistive random access memory device 被引量:1
1
作者 Xiang-lei HE Rui-jie TANG +4 位作者 Feng YANG mayameen skadhim Jie-xin WANG Yuan PU Dan WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第12期1698-1705,共8页
We propose a nonvolatile resistive random access memory device by employing nanodispersion of zirconia(ZrO2) quantum dots(QDs) for the formation of an active layer. The memory devices comprising a typical sandwich str... We propose a nonvolatile resistive random access memory device by employing nanodispersion of zirconia(ZrO2) quantum dots(QDs) for the formation of an active layer. The memory devices comprising a typical sandwich structure of Ag(top)/ZrO2(active layer)/Ti(bottom) are fabricated using a facile spin-coating method. The optimized device exhibits a high resistance state/low resistance state resistance difference(about 10 Ω), a good cycle performance(the number of cycles larger than 100), and a relatively low conversion current(about 1 μA). Atomic force microscopy and scanning electron microscope are used to observe the surface morphology and stacking state of the ZrO2 active layer. Experimental results show that the ZrO2 active layer is stacked compactly and has a low roughness(Ra=4.49 nm) due to the uniform distribution of the ZrO2 QDs. The conductive mechanism of the Ag/ZrO2/Ti device is analyzed and studied, and the conductive filaments of Ag ions and oxygen vacancies are focused on to clarify the resistive switching memory behavior. This study offers a facile approach of memristors for future electronic applications. 展开更多
关键词 Zirconia quantum dot Resistive switching Memory device Spin coating
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部