The cross section values of the^(71)Ga(n,γ)^(72)Ga reaction are measured,which are 9.14±0.81 mb and 5.74±0.50 mb at 2.15 and 3.19 MeV,respectively.The detailed uncertainty propagation and covariance analysi...The cross section values of the^(71)Ga(n,γ)^(72)Ga reaction are measured,which are 9.14±0.81 mb and 5.74±0.50 mb at 2.15 and 3.19 MeV,respectively.The detailed uncertainty propagation and covariance analysis are also given.The^(7)Li(p,n)^(7)Be reaction was used to generate the neutrons,and the neutron flux was normalized using the^(115)In(n,n′)^(115)In^(m)monitor reaction.The measured cross section data are compared with the data available in the EXFOR database,the data obtained using nuclear reaction model codes EMPIRE-3.2 and TALYS-1.95,and also the evaluated nuclear data from ENDF/B-VIII.0 and JEFF-3.1/A.The comparison shows that our result at 3.19 MeV is in good agreement with those of EMPIRE-3.2 and JEFF-3.1/A.Since there are no other measurements available at3.19 MeV,our data could not be compared with literature data at 3.19 MeV,but they are consistent with the cross section values available at 2.98±0.26 and 3.0±0.1 MeV.Our result at 2.15 MeV is slightly higher than the literature value available in EXFOR,evaluated value,and theoretically predicted result.展开更多
The cross sections of the^(121)Sb(n,2n)^(120)Sb^(m) and ^(123)Sb(n,2n)^(122)Sb reactions were measured at 12.50,15.79 and 18.87 MeV neutron energies relative to the standard ^(27)Al(n,α)^(24)Na monitor reaction using...The cross sections of the^(121)Sb(n,2n)^(120)Sb^(m) and ^(123)Sb(n,2n)^(122)Sb reactions were measured at 12.50,15.79 and 18.87 MeV neutron energies relative to the standard ^(27)Al(n,α)^(24)Na monitor reaction using neutron activation and offline γ-ray spectrometry.Irradiation of the samples was performed at the BARC-TIFR Pelletron Linac Facility,Mumbai,India.The quasi-monoenergetic neutrons were generated via the ^(7)Li(p,n)reaction.Statistical model calculations were performed by nuclear reaction codes TALYS(ver.1.9)and EMPIRE(ver.3.2.2)using various input parameters and nuclear level density models.The cross sections of the ground and the isomeric state as well as the isomeric cross section ratio were studied theoretically from reaction threshold to 26 MeV energies.The effect of pre-equilibrium emission is also discussed in detail using different theoretical models.The present measured cross sections were discussed and compared with the reported experimental data and evaluation data of the JEFF-3.3,ENDF/B-VIII.0,JENDL/AD-2017 and TENDL-2019 libraries.A detailed analysis of the uncertainties in the measured cross section data was performed using the covariance analysis method.Furthermore,a systematic study of the(n,2n)reaction cross section for^(121)Sb and^(123)Sb isotopes was also performed within 14-15 MeV neutron energies using various systematic formulae.This work helps to overcome discrepancies in Sb data and illustrate a better understanding of pre-equilibrium emission in the(n,2n)reaction channel.展开更多
基金Under the financial assistance of the B.R.N.S.,DAE,Mumbai(Sanction No.2012/36/17-BRNS Dated 14.08.2012),this research was carried out as part of a collaborative research project between the Department of Physics,Mizoram University and BARC,Mumbaithe grants received from the Institutions of Eminence(IoE)BHU(6031-B)UGC-DAE Consortium for Scientific Research(CRS/2021-22/02/474)
文摘The cross section values of the^(71)Ga(n,γ)^(72)Ga reaction are measured,which are 9.14±0.81 mb and 5.74±0.50 mb at 2.15 and 3.19 MeV,respectively.The detailed uncertainty propagation and covariance analysis are also given.The^(7)Li(p,n)^(7)Be reaction was used to generate the neutrons,and the neutron flux was normalized using the^(115)In(n,n′)^(115)In^(m)monitor reaction.The measured cross section data are compared with the data available in the EXFOR database,the data obtained using nuclear reaction model codes EMPIRE-3.2 and TALYS-1.95,and also the evaluated nuclear data from ENDF/B-VIII.0 and JEFF-3.1/A.The comparison shows that our result at 3.19 MeV is in good agreement with those of EMPIRE-3.2 and JEFF-3.1/A.Since there are no other measurements available at3.19 MeV,our data could not be compared with literature data at 3.19 MeV,but they are consistent with the cross section values available at 2.98±0.26 and 3.0±0.1 MeV.Our result at 2.15 MeV is slightly higher than the literature value available in EXFOR,evaluated value,and theoretically predicted result.
基金IUAC New Delhi financial assistance through a research project (IUAC/XIII.7/UFR-60321)
文摘The cross sections of the^(121)Sb(n,2n)^(120)Sb^(m) and ^(123)Sb(n,2n)^(122)Sb reactions were measured at 12.50,15.79 and 18.87 MeV neutron energies relative to the standard ^(27)Al(n,α)^(24)Na monitor reaction using neutron activation and offline γ-ray spectrometry.Irradiation of the samples was performed at the BARC-TIFR Pelletron Linac Facility,Mumbai,India.The quasi-monoenergetic neutrons were generated via the ^(7)Li(p,n)reaction.Statistical model calculations were performed by nuclear reaction codes TALYS(ver.1.9)and EMPIRE(ver.3.2.2)using various input parameters and nuclear level density models.The cross sections of the ground and the isomeric state as well as the isomeric cross section ratio were studied theoretically from reaction threshold to 26 MeV energies.The effect of pre-equilibrium emission is also discussed in detail using different theoretical models.The present measured cross sections were discussed and compared with the reported experimental data and evaluation data of the JEFF-3.3,ENDF/B-VIII.0,JENDL/AD-2017 and TENDL-2019 libraries.A detailed analysis of the uncertainties in the measured cross section data was performed using the covariance analysis method.Furthermore,a systematic study of the(n,2n)reaction cross section for^(121)Sb and^(123)Sb isotopes was also performed within 14-15 MeV neutron energies using various systematic formulae.This work helps to overcome discrepancies in Sb data and illustrate a better understanding of pre-equilibrium emission in the(n,2n)reaction channel.