This study investigates the transformative potential of big data analytics in healthcare, focusing on its application for forecasting patient outcomes and enhancing clinical decision-making. The primary challenges add...This study investigates the transformative potential of big data analytics in healthcare, focusing on its application for forecasting patient outcomes and enhancing clinical decision-making. The primary challenges addressed include data integration, quality, privacy issues, and the interpretability of complex machine-learning models. An extensive literature review evaluates the current state of big data analytics in healthcare, particularly predictive analytics. The research employs machine learning algorithms to develop predictive models aimed at specific patient outcomes, such as disease progression and treatment responses. The models are assessed based on three key metrics: accuracy, interpretability, and clinical relevance. The findings demonstrate that big data analytics can significantly revolutionize healthcare by providing data-driven insights that inform treatment decisions, anticipate complications, and identify high-risk patients. The predictive models developed show promise for enhancing clinical judgment and facilitating personalized treatment approaches. Moreover, the study underscores the importance of addressing data quality, integration, and privacy to ensure the ethical application of predictive analytics in clinical settings. The results contribute to the growing body of research on practical big data applications in healthcare, offering valuable recommendations for balancing patient privacy with the benefits of data-driven insights. Ultimately, this research has implications for policy-making, guiding the implementation of predictive models and fostering innovation aimed at improving healthcare outcomes.展开更多
文摘This study investigates the transformative potential of big data analytics in healthcare, focusing on its application for forecasting patient outcomes and enhancing clinical decision-making. The primary challenges addressed include data integration, quality, privacy issues, and the interpretability of complex machine-learning models. An extensive literature review evaluates the current state of big data analytics in healthcare, particularly predictive analytics. The research employs machine learning algorithms to develop predictive models aimed at specific patient outcomes, such as disease progression and treatment responses. The models are assessed based on three key metrics: accuracy, interpretability, and clinical relevance. The findings demonstrate that big data analytics can significantly revolutionize healthcare by providing data-driven insights that inform treatment decisions, anticipate complications, and identify high-risk patients. The predictive models developed show promise for enhancing clinical judgment and facilitating personalized treatment approaches. Moreover, the study underscores the importance of addressing data quality, integration, and privacy to ensure the ethical application of predictive analytics in clinical settings. The results contribute to the growing body of research on practical big data applications in healthcare, offering valuable recommendations for balancing patient privacy with the benefits of data-driven insights. Ultimately, this research has implications for policy-making, guiding the implementation of predictive models and fostering innovation aimed at improving healthcare outcomes.