期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improving the Compatibility of Biodegradable Poly (Lactic Acid) Toughening with Thermoplastic Polyurethane (TPU) and Compatibilized Meltblown Nonwoven 被引量:1
1
作者 md obaidur rahman Feichao Zhu Bin Yu 《Open Journal of Composite Materials》 2022年第1期1-15,共15页
Poly <span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><spa... Poly <span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> (PLA) is a biodegradable polymer which originates from natural resources such as corn</span><span style="font-family:Verdana;"> and</span><span style="font-family:Verdana;"> starch</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> offering excellent strength, biode</span><span style="font-family:Verdana;">gradability</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> nevertheless its inherent brittleness and low impact resistance</span><span style="font-family:Verdana;"> properties ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> limited its application. On the other hand</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> Thermoplastic Polyu</span><span style="font-family:Verdana;">rethane (TPU) has high toughness, durability and flexibility</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> which </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> one of</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the </span><span style="font-family:Verdana;">most potential alternatives for enhancing the flexibility and mechanical</span><span style="font-family:Verdana;"> strength of Poly </span></span><span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> (PLA) by blending it with a compati</span><span style="font-family:Verdana;">bilizer. With the aim to improve the mechanical and thermal properties of</span><span style="font-family:Verdana;"> Poly </span></span><span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> (PLA) </span><span style="font-family:Verdana;">meltblown nonwovens, The Thermoplastic Polyurethane (TPU) was melt</span><span style="font-family:Verdana;"> blend</span></span><span style="font-family:Verdana;">ed with Poly </span><span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> (PLA) at the different corresponding proportions for toughening the Poly </span><span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> and the corresponding PLA/TPU MBs (meltblown nonwovens) were also manufactured. Joncryl ADR 4400 </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> mixed </span><span style="font-family:Verdana;">in</span><span style="font-family:Verdana;">to the PLA matrix during processing. It was found that Joncryl had </span><span style="font-family:Verdana;">a </span><span style="font-family:;" "=""><span style="font-family:Verdana;">much higher chain extension that substantially in</span><span style="font-family:Verdana;">creased the molecular weight of the PLA matrix. SEM study revealed that Joncryl ADR 4400 is a good compatibi</span><span style="font-family:Verdana;">lizer</span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> Moreover, in this study</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the crystallization, thermal and rheological behaviors </span><span style="font-family:Verdana;">of the corresponding PLA and TPU blends were also investigated. PLA/TPU</span><span style="font-family:Verdana;"> MBs were also characterized by</span> <span style="font-family:Verdana;">morphology and mechanical properties. The rheological property of the</span><span style="font-family:Verdana;"> PLA/TPU meltblown nonwoven revealed that the viscosity </span><span style="font-family:Verdana;">is increasing as the amount of TPU is increasing in the blend, PLA/TPU</span><span style="font-family:Verdana;"> melt</span></span><span style="font-family:Verdana;">blown nonwovens exhibited excellent mechanical properties;they are soft, </span><span style="font-family:;" "=""><span style="font-family:Verdana;">elas</span><span style="font-family:Verdana;">tic, and have certain tensile strength. New materials have potential applica</span><span style="font-family:Verdana;">tions in the medical and agri</span><span style="font-family:Verdana;">cultural field</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">. Joncryl ADR 4400 compatibilized blends showed higher</span><span style="font-family:Verdana;"> strength than simple PLA/TPU blends at the same PLA/TPU ratio.</span> 展开更多
关键词 Poly (Lactic Acid) Thermoplastic Polyurethane Meltblown TOUGHENING NONWOVEN
下载PDF
热塑性聚氨酯增韧聚乳酸及其熔喷非织造材料研究 被引量:6
2
作者 md obaidur rahman 朱斐超 +5 位作者 杨潇东 黄瑞杰 汪伦合 刘蕊 徐晓天 于斌 《丝绸》 CAS CSCD 北大核心 2021年第10期28-35,共8页
聚乳酸(PLA)生物可降解熔喷非织造材料因其超细纤维结构和环境友好性而体现出有力的市场竞争力,但PLA由于其本身力学韧性不足,限制了拓展应用。文章以高流动性热塑性聚氨酯(TPU)为PLA的增韧材料,采用熔融共混法制备熔喷非织造用PLA/TPU... 聚乳酸(PLA)生物可降解熔喷非织造材料因其超细纤维结构和环境友好性而体现出有力的市场竞争力,但PLA由于其本身力学韧性不足,限制了拓展应用。文章以高流动性热塑性聚氨酯(TPU)为PLA的增韧材料,采用熔融共混法制备熔喷非织造用PLA/TPU复合母粒,对其相结构形态、热-结晶性能、热稳定性和晶型结构变化进行研究,进一步制备了PLA/TPU熔喷非织造材料。结果表明:PLA与TPU为不相容体系,TPU对PLA的结晶过程和晶型结构几乎无影响,但使PLA的热稳定性有所下降。TPU共混质量比在20%以内,PLA/TPU的熔喷加工性较佳,PLA/TPU熔喷非织造材料相比单一PLA熔喷材料体现出更好的强度和拉伸延展性。 展开更多
关键词 聚乳酸 热塑性聚氨酯 增韧 熔喷 非织造
下载PDF
Effect of Sintering Temperature on Structural and Magnetic Properties of Ni<sub>0.55</sub>Zn<sub>0.45</sub>Fe<sub>2</sub>O<sub>4</sub>Ferrites
3
作者 Robiul Islam md obaidur rahman +4 位作者 M. Abdul Hakim Dilip Kumar Saha Saiduzzaman Saiduzzaman Saroaut Noor md Al-Mamun 《Materials Sciences and Applications》 2012年第5期326-331,共6页
The effect of frequency and sintering temperature on initial permeability of Ni0.55Zn0.45Fe2O4 ferrites have been studied by using an impedance analyzer. The samples were prepared by conventional double sintering cera... The effect of frequency and sintering temperature on initial permeability of Ni0.55Zn0.45Fe2O4 ferrites have been studied by using an impedance analyzer. The samples were prepared by conventional double sintering ceramic technique using oxide nanoparticles of grain size 30 - 50 nm. Single phase spinal structure has been confirmed for the prepared samples by X-ray diffraction. As the sintering temperatures increase from 1160℃ to 1300℃, the permeability gradually increases. The increase of permeability is ascribed to the increase of density and grain size. Grain size is expected to grow with the increase of sintering temperature. Ferrites with large average grain size posses higher initial permeability. The Curie temperatures determined from temperature dependence of permeability of the samples sintered at different temperatures are found to be Tc = (321 ± 1)℃ and independent of sintering temperature. At Ts = 1300℃, Tc is found to increase substantially which can be explained by the fact that Zn has evaporated from the surface layer. 展开更多
关键词 Nanoparticle SINTERING TEMPERATURE CURIE TEMPERATURE Microstructure GRAIN Size
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部