Design and synthesis of organic chelating agents containing nitrogen and sulfur as donor atoms and their metal complexes is an interesting field of research for their different types of activities. The bi-dentate N,N ...Design and synthesis of organic chelating agents containing nitrogen and sulfur as donor atoms and their metal complexes is an interesting field of research for their different types of activities. The bi-dentate N,N chelating agent such as 2,2-Bipyridal has been playing a vital role in synthetic and medicinal chemistry. 2,2-Bipyridal has been used to prepare many mixed-ligand complexes. Different ligand complexes prepared from 2,2-Bipyridyl are used in different areas such as molecular catalysis, solar energy conversion, calorimetric analysis, herbicides, molecular recognition, self-assembly, antineoplastic agents, and nucleic acid probes. Another important property of these types of compounds is the triplet state photosensitizing character of bipyridyl nucleus, which is shown in metal complexes. It is also found that compounds containing O,S,N atoms have received considerable attention because of their pharmacological studies like anticancer, antibacterial, and antitumour activities. Therefore, it has been decided to synthesize Schiff bases derived from 2,2’- bipyridyl-5,5’-dicarbaldehyde compounds with O,S,N and F-containing amines and study their antibacterial properties. Several new Schiff bases have been synthesized and fully characterized by spectral data. This paper presents the synthesis and characterization of newly designed Schiff bases.展开更多
Even with implementation of current influenza vaccines,influenza still claims up to 500,000 lives worldwide annually,indicating a need for a better vaccine strategy.We have developed a technology to generate unique S_...Even with implementation of current influenza vaccines,influenza still claims up to 500,000 lives worldwide annually,indicating a need for a better vaccine strategy.We have developed a technology to generate unique S_(60)-HA1 pseudovirus nanoparticles(PVNPs)that display the receptor-binding HA1 domains of influenza viruses.Each self-assembled S_(60)-HA1 PVNP consists of a T=1 icosahedral S_(60) nanoparticle that resembles the inner shell of norovirus capsid and 60 surface-displayed HA1 antigens that are excellent vaccine targets.Soluble S_(60)-HA1 PVNPs presenting HA1 antigens of H7N9 influenza virus subtypes have been produced efficiently in large amount.Their three-dimensional(3D)structures have been solved by cryogenic electron microscopy.The PVNP-displayed HA1 antigens react with HA-specific antibody,and retain authentic sialic acid binding specificity and hemagglutinate human erythrocytes.The PVNPs are highly immunogenic,eliciting high titers of HA1-specific antibodies in mice and the mouse sera strongly inhibited hemagglutinations of homologous and heterologous influenza virus HA proteins.Therefore,the S_(60)-HA1 PVNPs may provide useful reagents to study influenza viruses and offer a potential new vaccine tactic to fight the deadly influenza disease.展开更多
文摘Design and synthesis of organic chelating agents containing nitrogen and sulfur as donor atoms and their metal complexes is an interesting field of research for their different types of activities. The bi-dentate N,N chelating agent such as 2,2-Bipyridal has been playing a vital role in synthetic and medicinal chemistry. 2,2-Bipyridal has been used to prepare many mixed-ligand complexes. Different ligand complexes prepared from 2,2-Bipyridyl are used in different areas such as molecular catalysis, solar energy conversion, calorimetric analysis, herbicides, molecular recognition, self-assembly, antineoplastic agents, and nucleic acid probes. Another important property of these types of compounds is the triplet state photosensitizing character of bipyridyl nucleus, which is shown in metal complexes. It is also found that compounds containing O,S,N atoms have received considerable attention because of their pharmacological studies like anticancer, antibacterial, and antitumour activities. Therefore, it has been decided to synthesize Schiff bases derived from 2,2’- bipyridyl-5,5’-dicarbaldehyde compounds with O,S,N and F-containing amines and study their antibacterial properties. Several new Schiff bases have been synthesized and fully characterized by spectral data. This paper presents the synthesis and characterization of newly designed Schiff bases.
基金The research described in this study was supported by the National Institute of Allergy and Infectious Diseases(NIAID,No.R56 AI148426-01A1 to M.T.)Cincinnati Children Hospital Medical Center(CCHMC,Innovation Funds 2018-2020,GAP Fund 2020-2021,and Research Innovation and Pilot Grant 2020-2021 to M.T.)+1 种基金the Center for Clinical and Translational Science and Training(CCTST)of the University of Cincinnati College of Medicine(Pilot Collaborative Studies Grant 2018-2019 to M.T.)that was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health(No.UL1TR001425).
文摘Even with implementation of current influenza vaccines,influenza still claims up to 500,000 lives worldwide annually,indicating a need for a better vaccine strategy.We have developed a technology to generate unique S_(60)-HA1 pseudovirus nanoparticles(PVNPs)that display the receptor-binding HA1 domains of influenza viruses.Each self-assembled S_(60)-HA1 PVNP consists of a T=1 icosahedral S_(60) nanoparticle that resembles the inner shell of norovirus capsid and 60 surface-displayed HA1 antigens that are excellent vaccine targets.Soluble S_(60)-HA1 PVNPs presenting HA1 antigens of H7N9 influenza virus subtypes have been produced efficiently in large amount.Their three-dimensional(3D)structures have been solved by cryogenic electron microscopy.The PVNP-displayed HA1 antigens react with HA-specific antibody,and retain authentic sialic acid binding specificity and hemagglutinate human erythrocytes.The PVNPs are highly immunogenic,eliciting high titers of HA1-specific antibodies in mice and the mouse sera strongly inhibited hemagglutinations of homologous and heterologous influenza virus HA proteins.Therefore,the S_(60)-HA1 PVNPs may provide useful reagents to study influenza viruses and offer a potential new vaccine tactic to fight the deadly influenza disease.