Coastal agriculture is vulnerable to climate change, thereby may affect food production systems and food security in Bangladesh. Methane (CH4) emission from coastal wetlands rice farming is a major environmental conce...Coastal agriculture is vulnerable to climate change, thereby may affect food production systems and food security in Bangladesh. Methane (CH4) emission from coastal wetlands rice farming is a major environmental concern due to its global warming potential. Therefore, field experiments were conducted at the southern coastal region of Shyamnagar, Satkhira, to investigate the feasibility of Rice-Shrimp and Rice-Crabs mixed farming for adaptation to the changing climate and sustaining food production system. The experimental treatments were designed on rice-based diversified farming systems such as rice sole cropping with no NPKS + no soil amendments (T1), rice sole cropping following farmers’ practice (FP) without soil amendment (T2), rice sole cropping following FP with phosphogypsum (PG) amendment (T3), Rice-Shrimp mixed culture with PG amendment (T4), Rice-Crabs mixed culture with PG amendment (T5), Rice-Shrimp mixed culture + PG amendment with Spirulina (Cyanobacteria) inoculation (T6), and Rice-Crabs mixed culture + PG amendment with Spirulina inoculation (T7). A closed chamber technique was followed to collect gas samples from the rice paddy field and samples were analyzed by Gas Chromatograph. It was found that Rice-Shrimp (T6) and Rice-Crabs mixed farming (T7) practices significantly decreased GWPs compared to the rice sole cropping system. In the dry boro season, the maximum GWPs 4175 kg CO<sub>2</sub> eq. ha<sup>-1</sup> was recorded from rice sole cropping (T2), which was decreased by 30% and 36.7% under Rice-Shrimp (T6) and Rice-Crabs (T7) mixed farming practices, respectively. Furthermore, in the wet aman season, maximum GWP 4525 kg CO<sub>2</sub> eq. ha<sup>-1</sup> was recorded from rice sole cropping (T2), which was decreased by 33.0% and 38.8% under Rice-Shrimp and Rice-Crabs mixed farming, respectively. Rice grain yield was low under rice sole cropping (3500 kg/ha), which was increased by 11.0% and 14.7% under Rice-Shrimp mixed farming amended with PG and Spirulina (T6) during wet aman and dry boro seasons, respectively. The postharvest soil properties, such as soil organic matter content, redox potential value (Eh), and exchangeable K<sup>+</sup> and Ca<sup>2+</sup>, contents in soil increased significantly with Phosphogypsum and Spirulina applications, however, decreased Na<sup>+</sup> content and electrical conductivity (EC) eventually improved rice plants’ tolerance to salinity and enhanced overall productivity of Rice-Shrimp and Rice-Crabs mixed farming. Conclusively, the conversion of wetland mono rice cropping into mixed Rice-Shrimp and Rice-Crabs farming would be a feasible strategy to sustain rice aquaculture-based farming, ensure food security and mitigate GWPs in coastal wetlands ecosystem.展开更多
文摘Coastal agriculture is vulnerable to climate change, thereby may affect food production systems and food security in Bangladesh. Methane (CH4) emission from coastal wetlands rice farming is a major environmental concern due to its global warming potential. Therefore, field experiments were conducted at the southern coastal region of Shyamnagar, Satkhira, to investigate the feasibility of Rice-Shrimp and Rice-Crabs mixed farming for adaptation to the changing climate and sustaining food production system. The experimental treatments were designed on rice-based diversified farming systems such as rice sole cropping with no NPKS + no soil amendments (T1), rice sole cropping following farmers’ practice (FP) without soil amendment (T2), rice sole cropping following FP with phosphogypsum (PG) amendment (T3), Rice-Shrimp mixed culture with PG amendment (T4), Rice-Crabs mixed culture with PG amendment (T5), Rice-Shrimp mixed culture + PG amendment with Spirulina (Cyanobacteria) inoculation (T6), and Rice-Crabs mixed culture + PG amendment with Spirulina inoculation (T7). A closed chamber technique was followed to collect gas samples from the rice paddy field and samples were analyzed by Gas Chromatograph. It was found that Rice-Shrimp (T6) and Rice-Crabs mixed farming (T7) practices significantly decreased GWPs compared to the rice sole cropping system. In the dry boro season, the maximum GWPs 4175 kg CO<sub>2</sub> eq. ha<sup>-1</sup> was recorded from rice sole cropping (T2), which was decreased by 30% and 36.7% under Rice-Shrimp (T6) and Rice-Crabs (T7) mixed farming practices, respectively. Furthermore, in the wet aman season, maximum GWP 4525 kg CO<sub>2</sub> eq. ha<sup>-1</sup> was recorded from rice sole cropping (T2), which was decreased by 33.0% and 38.8% under Rice-Shrimp and Rice-Crabs mixed farming, respectively. Rice grain yield was low under rice sole cropping (3500 kg/ha), which was increased by 11.0% and 14.7% under Rice-Shrimp mixed farming amended with PG and Spirulina (T6) during wet aman and dry boro seasons, respectively. The postharvest soil properties, such as soil organic matter content, redox potential value (Eh), and exchangeable K<sup>+</sup> and Ca<sup>2+</sup>, contents in soil increased significantly with Phosphogypsum and Spirulina applications, however, decreased Na<sup>+</sup> content and electrical conductivity (EC) eventually improved rice plants’ tolerance to salinity and enhanced overall productivity of Rice-Shrimp and Rice-Crabs mixed farming. Conclusively, the conversion of wetland mono rice cropping into mixed Rice-Shrimp and Rice-Crabs farming would be a feasible strategy to sustain rice aquaculture-based farming, ensure food security and mitigate GWPs in coastal wetlands ecosystem.