In this paper, a high sensitive photonic crystal fiber (PCF) based surface plasmon resonance (SPR) biosensor is numerically studied. In this structure, as a plasmonic material, gold (Au) is used because of its chemica...In this paper, a high sensitive photonic crystal fiber (PCF) based surface plasmon resonance (SPR) biosensor is numerically studied. In this structure, as a plasmonic material, gold (Au) is used because of its chemical activeness. And a layer of sensing medium is used outside of the fiber to make the structure effective. Any unknown biomolecular analyte can be detected by placing or flowing it on the metal surface. Guiding properties and results are investigated using Finite element method (FEM). Results show that maximum sensitivity is 4000 nm/RIU, as well as resolution, is 2.5 × 10−5 RIU of the proposed sensor.展开更多
Nanocrystalline Magnesium ferrite has been prepared by chemical co-precipitation technique. Structural characterization has been performed by X-ray diffraction. Formation of ferrites has also been studied by using FTI...Nanocrystalline Magnesium ferrite has been prepared by chemical co-precipitation technique. Structural characterization has been performed by X-ray diffraction. Formation of ferrites has also been studied by using FTIR. Frequency dependence of real and imaginary part of initial permeability has been presented for the samples sintered at different temperatures. Real part of initial permeability, increases with the increase of grain growth. The loss component repre- sented by imaginary part of initial permeability decreases with frequency up to the measured frequency of this study of 13 MHz. Curie temperatures have been determined from the temperature dependence of permeability. Curie temperatures for the samples of this composition do not vary significantly with the variation of sintering temperatures. B-H loop measurements have been carried out by B-H loop tracer. Transport property measurements haven been carried out by electrometer and impedance analyzer.展开更多
文摘In this paper, a high sensitive photonic crystal fiber (PCF) based surface plasmon resonance (SPR) biosensor is numerically studied. In this structure, as a plasmonic material, gold (Au) is used because of its chemical activeness. And a layer of sensing medium is used outside of the fiber to make the structure effective. Any unknown biomolecular analyte can be detected by placing or flowing it on the metal surface. Guiding properties and results are investigated using Finite element method (FEM). Results show that maximum sensitivity is 4000 nm/RIU, as well as resolution, is 2.5 × 10−5 RIU of the proposed sensor.
文摘Nanocrystalline Magnesium ferrite has been prepared by chemical co-precipitation technique. Structural characterization has been performed by X-ray diffraction. Formation of ferrites has also been studied by using FTIR. Frequency dependence of real and imaginary part of initial permeability has been presented for the samples sintered at different temperatures. Real part of initial permeability, increases with the increase of grain growth. The loss component repre- sented by imaginary part of initial permeability decreases with frequency up to the measured frequency of this study of 13 MHz. Curie temperatures have been determined from the temperature dependence of permeability. Curie temperatures for the samples of this composition do not vary significantly with the variation of sintering temperatures. B-H loop measurements have been carried out by B-H loop tracer. Transport property measurements haven been carried out by electrometer and impedance analyzer.