期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spray Pyrolyzed TiO2 Embedded Multi-Layer Front Contact Design for High-Efficiency Perovskite Solar Cells
1
作者 md.shahiduzzaman Mohammad Ismail Hossain +11 位作者 Sem Visal Tetsuya Kaneko Wayesh Qarony Shinjiro Umezu Koji Tomita Satoru Iwamori Dietmar Knipp Yuen Hong Tsang Md.Akhtaruzzaman Jean-Michel Nunzi Tetsuya Taima Masao Isomura 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第2期262-278,共17页
The photovoltaic performance of perovskite solar cells(PSCs)can be improved by utilizing efficient front contact.However,it has always been a significant challenge for fabricating high-quality,scalable,controllable,an... The photovoltaic performance of perovskite solar cells(PSCs)can be improved by utilizing efficient front contact.However,it has always been a significant challenge for fabricating high-quality,scalable,controllable,and cost-effective front contact.This study proposes a realistic multi-layer front contact design to realize efficient single-junction PSCs and perovskite/perovskite tandem solar cells(TSCs).As a critical part of the front contact,we prepared a highly compact titanium oxide(TiO2)film by industrially viable Spray Pyrolysis Deposition(SPD),which acts as a potential electron transport layer(ETL)for the fabrication of PSCs.Optimization and reproducibility of the TiO2 ETL were discreetly investigated while fabricating a set of planar PSCs.As the front contact has a significant influence on the optoelectronic properties of PSCs,hence,we investigated the optics and electrical effects of PSCs by three-dimensional(3D)finite-difference time-domain(FDTD)and finite element method(FEM)rigorous simulations.The investigation allows us to compare experimental results with the outcome from simulations.Furthermore,an optimized single-junction PSC is designed to enhance the energy conversion efficiency(ECE)by>30% compared to the planar reference PSC.Finally,the study has been progressed to the realization of all-perovskite TSC that can reach the ECE,exceeding 30%.Detailed guidance for the completion of high-performance PSCs is provided. 展开更多
关键词 PEROVSKITE Tandem solar cells Spray pyrolysis deposition TiO2 compact layer Optics and optimization Electrical characteristic
下载PDF
Nanophotonic-structured front contact for high-performance perovskite solar cells
2
作者 Md.Akhtaruzzaman Mohammad Ismail Hossain +5 位作者 Mohammad Aminul Islam md.shahiduzzaman Ghulam Muhammad A.K.Mahmud Hasan Yuen Hong Tsang Kamaruzzaman Sopian 《Science China Materials》 SCIE EI CAS CSCD 2022年第7期1727-1740,共14页
We report the design of a nanophotonic metaloxide front contact aimed at perovskite solar cells(PSCs)to enhance optoelectronic properties and device stability in the presence of ultraviolet(UV)light.High-quality Cr-do... We report the design of a nanophotonic metaloxide front contact aimed at perovskite solar cells(PSCs)to enhance optoelectronic properties and device stability in the presence of ultraviolet(UV)light.High-quality Cr-doped ZnO film was prepared by industrially feasible magnetron sputter deposition for the electron transport layer of PSCs.As a means,the influence of the Cr content on the film and device was systematically determined.In-depth device optics and electrical effects were studied using advanced three-dimensional opto-electrical multiphysics rigorous simulations,optimizing the front contact for realizing high performance.The numerical simulation was validated by fabricating PSCs optimized to reach high performance,energy conversion efficiency(ECE)=17.3%,open-circuit voltage(V_(OC))=1.08 V,short-circuit current density(J_(SC))=21.1 mA cm^(-2),and fillfactor(FF)=76%.Finally,a realistic front contact of nanophotonic architecture was proposed while improving broadband light absorption of the solar spectrum and light harvesting,resulting in enhanced quantum efficiency(QE).The nanophotonic PSC enables J_(SC)improvement by~17%while reducing the reflection by 12%,resulting in an estimated conversion efficiency over 23%.It is further demonstrated how the PSCs’UV-stability can be improved without considerably sacrificing optoelectronic performances.Particulars of nanophotonic designed ZnO:Cr front contact,PSCs device,and fabrication process are described. 展开更多
关键词 ZnO:Cr front contact magnetron sputtering perovskite solar cells UV stability optics and electrical effects
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部