Nitric oxide(NO),a versatile molecule,plays multiple roles in plant growth and development and is a key signaling molecule in plant response to abiotic stress.Nutrient management strategy is critical for abiotic stres...Nitric oxide(NO),a versatile molecule,plays multiple roles in plant growth and development and is a key signaling molecule in plant response to abiotic stress.Nutrient management strategy is critical for abiotic stress alleviation in plants.Sulfur(S) is important under stress conditions,as its assimilatory products neutralize the imbalances in cells created by excessive generation of reactive oxygen species(ROS).NO abates the harmful effects of ROS by enhancing antioxidant enzymes,stimulating S assimilation,and reacting with other target molecules,and regulates the expression of various stress-responsive genes under salt stress.This review focuses on the role of NO and S in responses of plants to salt stress,and describes the crosstalk between NO and S assimilation in salt tolerance.The regulation of NO and/or S assimilation using molecular biology tools may help crops to withstand salinity stress.展开更多
基金the Department of Science & Technology,New Delhi and research facilities in lab of NAK in the DBT-BUILDER programme(No.BT/PR4872/INF/22/150/2012) of Department of Biotechnology,New Delhi
文摘Nitric oxide(NO),a versatile molecule,plays multiple roles in plant growth and development and is a key signaling molecule in plant response to abiotic stress.Nutrient management strategy is critical for abiotic stress alleviation in plants.Sulfur(S) is important under stress conditions,as its assimilatory products neutralize the imbalances in cells created by excessive generation of reactive oxygen species(ROS).NO abates the harmful effects of ROS by enhancing antioxidant enzymes,stimulating S assimilation,and reacting with other target molecules,and regulates the expression of various stress-responsive genes under salt stress.This review focuses on the role of NO and S in responses of plants to salt stress,and describes the crosstalk between NO and S assimilation in salt tolerance.The regulation of NO and/or S assimilation using molecular biology tools may help crops to withstand salinity stress.