A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix. The ...A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix. The electrochemical behavior of captopril (CAP) at the surface of the modified electrode was investigated using electroanalytical methods. The modified electrode showed excellent electrocatalytic activity for the oxidation of CAP in aqueous solutions at physiological pH values. Cyclic voltammetric curves showed that the oxidation of CAP at the surface of the modified electrode reduced its overpotential by more than 290 mV. The modified electrode was used for detecting captopril using cyclic voltammetry and square wave voltammetry techniques. A calibration curve in the range of 0.03 to 2400 μmol/L was obtained that had a detection limit of 0.0096 μmol/L (3?) under the optimized conditions. The modified electrode was successfully used for the determination of captopril in pharmaceutical and biological samples.展开更多
Ag nanoparticles were synthesized on the surface of a glassy carbon electrode modified with p‐tert‐butylcalix[4]arene and p‐tert‐butylcalix[6]arene by the deposition of Ag+ at an open circuit potential followed by...Ag nanoparticles were synthesized on the surface of a glassy carbon electrode modified with p‐tert‐butylcalix[4]arene and p‐tert‐butylcalix[6]arene by the deposition of Ag+ at an open circuit potential followed by the electrochemical reduction of the Ag+.The presence of the calixarene layer on the electrode surface controlled the particle size and prevented agglomeration.Cyclic voltam‐metry showed that the Ag nanoparticles on the modified glassy carbon electrode had good catalytic ability for the reduction of flutamide.The effects of calixarene concentration,potential applied for the reduction of Ag+,number of calixarene layers,and p H value on the electrocatalytic activity of the Ag nanoparticles were investigated.The modified electrode had a linear range in differential pulse voltammetry of 10-1000 μmol/L with a detection limit of 9.33 μmol/L for flutamide at an S/N = 3.The method was applied to the detection of flutamide in practical samples.展开更多
A benzoylferrocene modified multi‐wall carbon nanotube paste electrode for the measurement of methionine (MET) concentration is described. MET electrochemical response characteristics of the modified electrode in a p...A benzoylferrocene modified multi‐wall carbon nanotube paste electrode for the measurement of methionine (MET) concentration is described. MET electrochemical response characteristics of the modified electrode in a phosphate buffer solution of pH 7.0 were investigated by cyclic voltammetry, square wave voltammetry, and chronoamperometry. Under optimized conditions, the square wave voltammetric peak current of MET increased linearly with MET concentration in the range of 1.0×107 to 2.0×104 mol/L. The detection limit was 58.0 nmol/L MET. The diffusion coefficient (D=5.62×106cm2/s) and electron transfer coefficient (α=0.4) for MET oxidation were also determined. The sensor was successfully applied for the measurement of MET concentration in human urine.展开更多
文摘A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix. The electrochemical behavior of captopril (CAP) at the surface of the modified electrode was investigated using electroanalytical methods. The modified electrode showed excellent electrocatalytic activity for the oxidation of CAP in aqueous solutions at physiological pH values. Cyclic voltammetric curves showed that the oxidation of CAP at the surface of the modified electrode reduced its overpotential by more than 290 mV. The modified electrode was used for detecting captopril using cyclic voltammetry and square wave voltammetry techniques. A calibration curve in the range of 0.03 to 2400 μmol/L was obtained that had a detection limit of 0.0096 μmol/L (3?) under the optimized conditions. The modified electrode was successfully used for the determination of captopril in pharmaceutical and biological samples.
文摘Ag nanoparticles were synthesized on the surface of a glassy carbon electrode modified with p‐tert‐butylcalix[4]arene and p‐tert‐butylcalix[6]arene by the deposition of Ag+ at an open circuit potential followed by the electrochemical reduction of the Ag+.The presence of the calixarene layer on the electrode surface controlled the particle size and prevented agglomeration.Cyclic voltam‐metry showed that the Ag nanoparticles on the modified glassy carbon electrode had good catalytic ability for the reduction of flutamide.The effects of calixarene concentration,potential applied for the reduction of Ag+,number of calixarene layers,and p H value on the electrocatalytic activity of the Ag nanoparticles were investigated.The modified electrode had a linear range in differential pulse voltammetry of 10-1000 μmol/L with a detection limit of 9.33 μmol/L for flutamide at an S/N = 3.The method was applied to the detection of flutamide in practical samples.
文摘A benzoylferrocene modified multi‐wall carbon nanotube paste electrode for the measurement of methionine (MET) concentration is described. MET electrochemical response characteristics of the modified electrode in a phosphate buffer solution of pH 7.0 were investigated by cyclic voltammetry, square wave voltammetry, and chronoamperometry. Under optimized conditions, the square wave voltammetric peak current of MET increased linearly with MET concentration in the range of 1.0×107 to 2.0×104 mol/L. The detection limit was 58.0 nmol/L MET. The diffusion coefficient (D=5.62×106cm2/s) and electron transfer coefficient (α=0.4) for MET oxidation were also determined. The sensor was successfully applied for the measurement of MET concentration in human urine.