The hydrodynamic efficiencies of caisson-type vertical porous seawalls used for protecting coastal areas were calculated in this study. Physical models were developed to compare the wave reflection from vertical plane...The hydrodynamic efficiencies of caisson-type vertical porous seawalls used for protecting coastal areas were calculated in this study. Physical models were developed to compare the wave reflection from vertical plane, semi-porous, and porous seawalls caused by both regular and random waves. Tests were carried out for a wide range of wave heights, wave periods, and different water depths (d=0.165, 0.270 and 0.375 m). The performance regarding the reflected waves from porous and semi-porous seawalls showed improvement when compared with those from the plane seawall. The reflection coefficients of the porous and semi-porous seawalls were calculated as 0.6 and 0.75, respectively, while the coefficient for the fully reflecting plane vertical wall was significantly higher (0.9). It was also observed that the reflection coefficient decreases with increase in wave steepness and relative water depth. In addition, the reduction in the reflection coefficient of porous and semi-porous seawalls, as compared to that of a plane seawall, was observed for both regular and random waves. New equations were also proposed to calculate the reflection coefficient of different types of seawalls with the aid of laboratory experiments. By verifying the developed equations using some other experimental data, it was validated that the equations could be used for practical situations. The results of the present study can be applied to optimize the design of vertical seawalls and for coastal protecting schemes.展开更多
文摘The hydrodynamic efficiencies of caisson-type vertical porous seawalls used for protecting coastal areas were calculated in this study. Physical models were developed to compare the wave reflection from vertical plane, semi-porous, and porous seawalls caused by both regular and random waves. Tests were carried out for a wide range of wave heights, wave periods, and different water depths (d=0.165, 0.270 and 0.375 m). The performance regarding the reflected waves from porous and semi-porous seawalls showed improvement when compared with those from the plane seawall. The reflection coefficients of the porous and semi-porous seawalls were calculated as 0.6 and 0.75, respectively, while the coefficient for the fully reflecting plane vertical wall was significantly higher (0.9). It was also observed that the reflection coefficient decreases with increase in wave steepness and relative water depth. In addition, the reduction in the reflection coefficient of porous and semi-porous seawalls, as compared to that of a plane seawall, was observed for both regular and random waves. New equations were also proposed to calculate the reflection coefficient of different types of seawalls with the aid of laboratory experiments. By verifying the developed equations using some other experimental data, it was validated that the equations could be used for practical situations. The results of the present study can be applied to optimize the design of vertical seawalls and for coastal protecting schemes.