期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Data-Driven Models for Predicting Solar Radiation in Semi-Arid Regions
1
作者 mehdi jamei Nadjem Bailek +6 位作者 Kada Bouchouicha Muhammed A.Hassan Ahmed Elbeltagi Alban Kuriqi Nadhir Al-Ansar Javier Almorox El-Sayed M.El-kenawy 《Computers, Materials & Continua》 SCIE EI 2023年第1期1625-1640,共16页
Solar energy represents one of themost important renewable energy sources contributing to the energy transition process.Considering that the observation of daily global solar radiation(GSR)is not affordable in some pa... Solar energy represents one of themost important renewable energy sources contributing to the energy transition process.Considering that the observation of daily global solar radiation(GSR)is not affordable in some parts of the globe,there is an imperative need to develop alternative ways to predict it.Therefore,the main objective of this study is to evaluate the performance of different hybrid data-driven techniques in predicting daily GSR in semi-arid regions,such as the majority of Spanish territory.Here,four ensemble-based hybrid models were developed by hybridizing Additive Regression(AR)with Random Forest(RF),Locally Weighted Linear Regression(LWLR),Random Subspace(RS),and M5P.The base algorithms of the developed models are scarcely applied in previous studies to predict solar radiation.The testing phase outcomes demonstrated that the ARRF models outperform all other hybrid models.The provided models were validated by statisticalmetrics,such as the correlation coefficient(R)and root mean square error(RMSE).The results proved that Scenario#6,utilizing extraterrestrial solar radiation,relative humidity,wind speed,and mean,maximum,and minimum ambient air temperatures as the model inputs,leads to the most accurate predictions among all scenarios(R=0.968–0.988 and RMSE=1.274–1.403 MJ/m^(2)・d).Also,Scenario#3 stood in the next rank of accuracy for predicting the solar radiation in both validating stations.The AD-RF model was the best predictive,followed by AD-RS and AD-LWLR.Hence,this study recommends new effective methods to predict GSR in semiarid regions. 展开更多
关键词 Solar radiation prediction random forest locally-weighted linear regression additive regression
下载PDF
Prediction of flyrock induced by mine blasting using a novel kernel-based extreme learning machine
2
作者 mehdi jamei Mahdi Hasanipanah +2 位作者 Masoud Karbasi Iman Ahmadianfar Somaye Taherifar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1438-1451,共14页
Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evalu... Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evaluate the capability of a novel kernel-based extreme learning machine algorithm,called kernel extreme learning machine(KELM),by which the flyrock distance(FRD) is predicted.Furthermore,the other three data-driven models including local weighted linear regression(LWLR),response surface methodology(RSM) and boosted regression tree(BRT) are also developed to validate the main model.A database gathered from three quarry sites in Malaysia is employed to construct the proposed models using 73 sets of spacing,burden,stemming length and powder factor data as inputs and FRD as target.Afterwards,the validity of the models is evaluated by comparing the corresponding values of some statistical metrics and validation tools.Finally,the results verify that the proposed KELM model on account of highest correlation coefficient(R) and lowest root mean square error(RMSE) is more computationally efficient,leading to better predictive capability compared to LWLR,RSM and BRT models for all data sets. 展开更多
关键词 BLASTING Flyrock distance Kernel extreme learning machine(KELM) Local weighted linear regression(LWLR) Response surface methodology(RSM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部