期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
1
作者 Soheil Oveissi Aazam Ghassemi +2 位作者 mehdi salehi S.Ali Eftekhari Saeed Ziaei-Rad 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期511-528,共18页
We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love,... We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love, Fl ¨ugge, Donnell, and Sanders are generalized using Eringen's nonlocal elasticity theory. By combining these theories in cylindrical coordinates,a modified motion equation is presented to investigate the buckling behavior of the nanofluid-nanostructure-interaction problem. Herein, in addition to the small-scale effect of the structure and the passing fluid on the critical buckling strain,we discuss the effects of nanoflow velocity, fluid density(nano-liquid/nano-gas), half-wave numbers, aspect ratio, and nanoshell flexural rigidity. The analytical approach is used to discretize and solve the obtained relations to study the mentioned cases. 展开更多
关键词 BUCKLING nonlocal cylindrical shell model anofluid-nanostructure interaction carbon nanotubes
下载PDF
Formation of Nano/Ultrafine Grains in AISI 321 Stainless Steel Using Advanced Thermo-Mechanical Process 被引量:1
2
作者 Mohsen Golzar Shahri S.Rahman Hosseini mehdi salehi 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第4期499-504,共6页
Production of nano/ultrafine grains through deformation-induced martensite formation and its reversion to austenite in an AISI 321 stainless steel was studied. The repetitive cold rolling and subsequent annealing were... Production of nano/ultrafine grains through deformation-induced martensite formation and its reversion to austenite in an AISI 321 stainless steel was studied. The repetitive cold rolling and subsequent annealing were conducted to obtain nanocrystalline structure. Heavy cold rolling (90% reduction) at +20 and -20 ℃ was carded out to induce the formation of α′-martensite from metastable austenitic material. The process was followed by annealing treatment at 700-900 ℃ for 0.5-30 min. Effects of process parameters, i.e., "reduction percentage," "rolling temperature," "annealing temperature" and "annealing time", on the microstructural development were considered. Microstructural evolutions were conducted using feritscope, X-ray diffractometer and scanning electron microscope. Hardness of the specimens was measured by Vickers method. Results revealed that the higher thickness reduction and lower rolling temperature provided more martensite volume fraction and further hardness. X-ray diffraction patterns and feritoscopic results indicated that saturated strain (εs) was reduced from 2.3 to 0.9 when temperature declined from +20 to -20 ℃. The smallest grain size (about 70 nm) was achieved in the condition of cold rolling at -20℃followed by annealing at 750 ℃for 5 min. 展开更多
关键词 Austenitic stainless steel Deformation-induced martensite Nano/ultrafine grain structure Thermo-mechanical treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部