The quantification of methyldopa in pharmaceuticals has been carried out using a glassy carbon electrode(GCE) modified with multi-walled carbon nanotubes(MWCNTs). Methyldopa exhibited a quasi-reversible response w...The quantification of methyldopa in pharmaceuticals has been carried out using a glassy carbon electrode(GCE) modified with multi-walled carbon nanotubes(MWCNTs). Methyldopa exhibited a quasi-reversible response with a peak potential separation of 473 m V on a bare GCE. However, the cyclic voltammetric behaviour of methyldopa was improved with the increase of the amount of MWCNTs. It was also shown that the electrocatalytic activity of the electrode towards the response of methyldopa was higher with larger amount of film on the surface. The results showed that the peak current was proportional to the concentration of methyldopa with a linear dynamic range of 0.005-0.388 mmol/L and a detection limit of 1.0 nmol/L was obtained using square wave voltammetry. The experimental data showed that the detection limit of methyldopa and peak separation from interfering compounds such as ascorbic acid(AA) and uric acid(UA) were improved using the proposed procedure. The method was successfully applied for the determination of methyldopa in pharmaceuticals.展开更多
基金the financial support from the University of Harran (HüBAK)
文摘The quantification of methyldopa in pharmaceuticals has been carried out using a glassy carbon electrode(GCE) modified with multi-walled carbon nanotubes(MWCNTs). Methyldopa exhibited a quasi-reversible response with a peak potential separation of 473 m V on a bare GCE. However, the cyclic voltammetric behaviour of methyldopa was improved with the increase of the amount of MWCNTs. It was also shown that the electrocatalytic activity of the electrode towards the response of methyldopa was higher with larger amount of film on the surface. The results showed that the peak current was proportional to the concentration of methyldopa with a linear dynamic range of 0.005-0.388 mmol/L and a detection limit of 1.0 nmol/L was obtained using square wave voltammetry. The experimental data showed that the detection limit of methyldopa and peak separation from interfering compounds such as ascorbic acid(AA) and uric acid(UA) were improved using the proposed procedure. The method was successfully applied for the determination of methyldopa in pharmaceuticals.