This paper presents the evolution process of pressure angles from planar parallel mechanisms to spatial parallel mechanisms. Manipulability and condition number, which are frequently used in the optimum design of para...This paper presents the evolution process of pressure angles from planar parallel mechanisms to spatial parallel mechanisms. Manipulability and condition number, which are frequently used in the optimum design of parallel mechanisms, are introduced from serial robots at first. Then, both theoretical analysis and practical experiences demonstrate that these concepts seem imperfect when they are used in parallel mechanisms. For this reason, this paper introduces the pressure angles in planar 4-bar mechanisms to spatial parallel mechanisms, which include redundant parallel mechanisms. Two kinds of pressure angles extracted from the determinant of direct and indirect Jacobian matrices are investigated. Moreover, two comprehensive and visible global performance indices are defined, showing the advantages in evaluating the workspace, singularity and motion/force transmission capabilities. With a 2-DOF planar and a 3-DOF spatial parallel mechanism as examples, the application of the performance indices is investigated and compared with the condition number at last. The proposed concept can be extended to other spatial parallel mechanisms.展开更多
High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations.High quality of computer control with proper controller parameter...High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations.High quality of computer control with proper controller parameters is conducive to overcoming this problem and has a significant effect on reducing the robot's tracking error.By taking Delta robot as an example,a method for parameter tuning of the fixed gain motion controller is presented.Having identifying the parameters of the servo system in the frequency domain by the sinusoidal excitation,the PD+feedforward control strategy is proposed to adapt to the varying inertia loads,allowing the controller parameters to be tuned by minimizing the mean square tracking error along a typical trajectory.A set of optimum parameters is obtained through computer simulations and the effectiveness of the proposed approach is validated by experiments on a real prototype machine.Let the traveling plate undergoes a specific trajectory and the results show that the tracking error can be reduced by at least 50%in comparison with the conventional auto-tuning and Z-N methods.The proposed approach is a whole workspace optimization and can be applied to the parameter tuning of fixed gain motion controllers.展开更多
Stiffness modeling is one of the most significant issues in the design of parallel kinematic machine (PKM). This paper presents a semi-analytical approach that enables the stiffness of PKM with complex machine frame g...Stiffness modeling is one of the most significant issues in the design of parallel kinematic machine (PKM). This paper presents a semi-analytical approach that enables the stiffness of PKM with complex machine frame geometry to be estimated effectively. This approach can be implemented by three steps: (i) decomposition of the entire system into two sub-systems associated with the parallel mechanism and the machine frame respectively; (ii) stiffness modeling of each sub-system using the analytical approach and the finite element analysis; and (iii) generation of the stiffness model of the entire system by means of linear superposition. In the modeling process of each sub-system, the virtual work princi- ple and overall deflection Jacobian are employed with special attention to the bending rigidity of the constrained passive limb and the interface stiffness of the machine frame. The stiffness distribution of a 5-DOF hybrid robot named TriVariant-B is investigated as an example to illustrate the effectiveness of this approach. The contributions of component rigidities to that of the system are evaluated using global indices. It shows that the results achieved by this approach have a good match to those obtained through finite element analysis and experiments.展开更多
基金Supported by the National Natural Science Foundation of China(No.51305293)Tianjin Technical Innovation Funds for the Minor Sci-tech Enterprise(No.14C26211200362)
文摘This paper presents the evolution process of pressure angles from planar parallel mechanisms to spatial parallel mechanisms. Manipulability and condition number, which are frequently used in the optimum design of parallel mechanisms, are introduced from serial robots at first. Then, both theoretical analysis and practical experiences demonstrate that these concepts seem imperfect when they are used in parallel mechanisms. For this reason, this paper introduces the pressure angles in planar 4-bar mechanisms to spatial parallel mechanisms, which include redundant parallel mechanisms. Two kinds of pressure angles extracted from the determinant of direct and indirect Jacobian matrices are investigated. Moreover, two comprehensive and visible global performance indices are defined, showing the advantages in evaluating the workspace, singularity and motion/force transmission capabilities. With a 2-DOF planar and a 3-DOF spatial parallel mechanism as examples, the application of the performance indices is investigated and compared with the condition number at last. The proposed concept can be extended to other spatial parallel mechanisms.
基金Supported by National Natural Science Foundation of China(Grant Nos.51305293,51135008)
文摘High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations.High quality of computer control with proper controller parameters is conducive to overcoming this problem and has a significant effect on reducing the robot's tracking error.By taking Delta robot as an example,a method for parameter tuning of the fixed gain motion controller is presented.Having identifying the parameters of the servo system in the frequency domain by the sinusoidal excitation,the PD+feedforward control strategy is proposed to adapt to the varying inertia loads,allowing the controller parameters to be tuned by minimizing the mean square tracking error along a typical trajectory.A set of optimum parameters is obtained through computer simulations and the effectiveness of the proposed approach is validated by experiments on a real prototype machine.Let the traveling plate undergoes a specific trajectory and the results show that the tracking error can be reduced by at least 50%in comparison with the conventional auto-tuning and Z-N methods.The proposed approach is a whole workspace optimization and can be applied to the parameter tuning of fixed gain motion controllers.
基金the National Natural Science Foundation of China (Grant Nos. 50535010 and 50775158)the Royal Society UK-China Joint Research Grant (Grant No. IJP-2005/R4)
文摘Stiffness modeling is one of the most significant issues in the design of parallel kinematic machine (PKM). This paper presents a semi-analytical approach that enables the stiffness of PKM with complex machine frame geometry to be estimated effectively. This approach can be implemented by three steps: (i) decomposition of the entire system into two sub-systems associated with the parallel mechanism and the machine frame respectively; (ii) stiffness modeling of each sub-system using the analytical approach and the finite element analysis; and (iii) generation of the stiffness model of the entire system by means of linear superposition. In the modeling process of each sub-system, the virtual work princi- ple and overall deflection Jacobian are employed with special attention to the bending rigidity of the constrained passive limb and the interface stiffness of the machine frame. The stiffness distribution of a 5-DOF hybrid robot named TriVariant-B is investigated as an example to illustrate the effectiveness of this approach. The contributions of component rigidities to that of the system are evaluated using global indices. It shows that the results achieved by this approach have a good match to those obtained through finite element analysis and experiments.