The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to ...The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.展开更多
The DarkSHINE experiment proposes a novel approach to single-electron-on-fixed-target exploration that focuses on the search for dark photons through their invisible decay into dark matter particles.Central to this in...The DarkSHINE experiment proposes a novel approach to single-electron-on-fixed-target exploration that focuses on the search for dark photons through their invisible decay into dark matter particles.Central to this initiative is an advanced tracking detector designed to achieve exceptional sensitivity in the detection of light dark matter candidates.This study evaluates the performance of several prototype AC-coupled low-gain avalanche diode(AC-LGAD)strip sensors specifically developed for the DarkSHINE tracking detector.The electrical properties of the sensors from two batches of wafers with different n^(+)doses are thoroughly evaluated.Spatial and temporal resolutions are measured using an infrared laser source.The spatial resolutions range from 6.5 to 8.2μm and from 8.8 to 12.3μm for the sensors from two distinct dose batches,each with a 100μm pitch size.Furthermore,the sensors demonstrate time resolutions of 8.3 and 11.4 ps,underscoring the potential of AC-LGAD technology in enhancing the performance of the DarkSHINE tracking detector.展开更多
The lack of a suitable rootstock to control scion growth has limited the development of high-density plantations in pear production, which is partly attributed to poor understanding of the dwarfing mechanism. In the p...The lack of a suitable rootstock to control scion growth has limited the development of high-density plantations in pear production, which is partly attributed to poor understanding of the dwarfing mechanism. In the present study, the rootstock of the dwarf-type pear (Pyrus betulaefolia)PY-9’ was identified and used as the material for anatomical analysis.PY-9’ grew to half the tree height of the normal cultivar Zhengdu’, along with fewer internodes and shorter length. Significant differences in growth rate betweenPY-9’ andZhengdu’ were detected at approximately 30 days after full bloom, which corresponded with the time of the greatest difference in water potential between the dwarf and normal cultivar.PY-9’ showed a higher photosynthetic rate thanZhengdu’. Anatomical analysis showed thatPY-9’ had higher area ratios of both phloem and xylem and more developed vascular tissues thanZhengdu’. The three-dimensional reconstructed skeleton of the xylem from X-ray computed tomography scanning revealed greater intervessel connectivity inZhengdu’ than inPY-9’, which could contribute to the more vigorous growth ofZhengdu’. This study thus provides the first comparison of the microstructural properties of xylem elements between a dwarfing-type and vigorous-type pear rootstock, providing new insights into the dwarfing mechanism in pear and facilitating breeding of dwarf pear rootstocks to increase crop productivity.展开更多
Background:The prevalence of multimorbidity is increasing,with a notable shift towards younger age groups.Methods:Convenience sampling was employed to select 15,988 young and middle-aged adults in Chongqing as the stu...Background:The prevalence of multimorbidity is increasing,with a notable shift towards younger age groups.Methods:Convenience sampling was employed to select 15,988 young and middle-aged adults in Chongqing as the study population.The Apriori algorithm was used to identify the multimorbidity patterns within this population,while an unordered binary logistic regression model was applied to assess the association between sleep,diet and the risk of multimorbidity.Results:The study population had an average age of 39.2±10.1 years.Apriori association rules revealed that the most prevalent binary chronic disease multimorbidity pattern was dyslipidaemia+hypertension(14.78%),while the most common ternary chronic disease multimorbidity pattern was diabetes+dyslipidaemia+hypertension(9.66%).The logistic regression analysis revealed that a lower rating of sleep quality was associated with an elevated risk of multimorbidity(odds ratio(OR)=1.17,95%confidence interval(CI):1.01,1.36).Individuals who adhere to a meat-based diet(OR=1.45,95%CI:1.25,1.68)and those with elevated salt intake(OR=1.22,95%CI:1.01,1.47)were also observed to have an increased risk of multimorbidity.Additionally,a greater likelihood of multimorbidity was observed among those following a spicy diet(OR=1.3,95%CI:1.11,1.52)and consuming more oil(OR=1.16,95%CI:1.01,1.33).Conclusion:A poor sleep quality and a dietary preference for meat-based,salt,spicy and oils were found to be associated with an increased risk of multimorbidity progression among young and middle-aged populations.It is recommended that young and middle-aged adults should pay attention not only to sleep duration but also to sleep quality and improve dietary habits to reduce the likelihood of multimorbidity.展开更多
Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inheren...Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inherent strong covalent bonds,the direct synthesis of 2D planar structure from nonlayered materials,especially for the realization of large-size ultrathin 2D nonlayered materials,is still a huge challenge.Here,a general atomic substitution conversion strategy is proposed to synthesize large-size,ultrathin nonlayered 2D materials.Taking nonlayered CdS as a typical example,large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method,where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method.The size and thickness of CdS flakes can be controlled by the CdI2 precursor.The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS,which has been evidenced by experiments and theoretical calculations.The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials,providing a bridge between layered and nonlayered materials,meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.展开更多
To obtain high-performance Al-Si-based cast alloys,refinement and modification of Si phases are required.An Al-12Si/ZnS powder inoculant was designed and fabricated using a chemical bath deposition method.The efficien...To obtain high-performance Al-Si-based cast alloys,refinement and modification of Si phases are required.An Al-12Si/ZnS powder inoculant was designed and fabricated using a chemical bath deposition method.The efficiency of the inoculant for modifying the eutectic Si phase in as-cast Al-12Si alloy was studied.Results show that Al-12Si/ZnS powder can significantly refine the eutectic Si in Al-Si cast alloys.The best refinement effect for eutectic Si is achieved with 17.5wt.%Al-12Si/ZnS powder.Coarse long needle-shaped eutectic Si with a length of 18μm was modified into approximately spherical shape with a diameter of 6.53μm,which is evenly distributed throughout the alloy.The E2EM model calculation indicates that the inter-plane misfit(F_(p))and inter-atomic spacing misfit(F_(r))between ZnS and Si are all less than 0.5%,which confirms that ZnS is a potential nucleation site for Si phase.The hardness,tensile strength,and elongation of Al-12Si alloys modified with 17.5%Al-12Si/ZnS powder increase 6.30%,16.18%and 55.45%,respectively,compared to the unmodified Al-12Si alloy.The fracture behavior of the alloy with 17.5wt.%Al-12Si/ZnS powder is dominated by transgranular fracture supplemented by intergranular fracture.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.52072272,52171145 and 22109120)the Zhejiang Provincial Natural Science Foundation of China (LQ21B030002)+1 种基金the Zhejiang Provincial Special Support Program for High-level Talents (2019R52042)the Key programs for Science and Technology Innovation of Wenzhou (ZG2022037)。
文摘The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.
基金supported by the National Natural Science Foundation of China(No.12150006)Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University(No.21TQ1400209)the Young Talents of National Talent Support Programs(No.24Z130300579).
文摘The DarkSHINE experiment proposes a novel approach to single-electron-on-fixed-target exploration that focuses on the search for dark photons through their invisible decay into dark matter particles.Central to this initiative is an advanced tracking detector designed to achieve exceptional sensitivity in the detection of light dark matter candidates.This study evaluates the performance of several prototype AC-coupled low-gain avalanche diode(AC-LGAD)strip sensors specifically developed for the DarkSHINE tracking detector.The electrical properties of the sensors from two batches of wafers with different n^(+)doses are thoroughly evaluated.Spatial and temporal resolutions are measured using an infrared laser source.The spatial resolutions range from 6.5 to 8.2μm and from 8.8 to 12.3μm for the sensors from two distinct dose batches,each with a 100μm pitch size.Furthermore,the sensors demonstrate time resolutions of 8.3 and 11.4 ps,underscoring the potential of AC-LGAD technology in enhancing the performance of the DarkSHINE tracking detector.
基金supported by grants from the Agriculture Science and Technology of Shandong Province (Grant No.2019YQ015)the Agricultural Variety Improvement Project of Shandong Province (Grant No.2022LZGC011)the earmarked fund for CARS (Grant No.CARS-28-07)。
文摘The lack of a suitable rootstock to control scion growth has limited the development of high-density plantations in pear production, which is partly attributed to poor understanding of the dwarfing mechanism. In the present study, the rootstock of the dwarf-type pear (Pyrus betulaefolia)PY-9’ was identified and used as the material for anatomical analysis.PY-9’ grew to half the tree height of the normal cultivar Zhengdu’, along with fewer internodes and shorter length. Significant differences in growth rate betweenPY-9’ andZhengdu’ were detected at approximately 30 days after full bloom, which corresponded with the time of the greatest difference in water potential between the dwarf and normal cultivar.PY-9’ showed a higher photosynthetic rate thanZhengdu’. Anatomical analysis showed thatPY-9’ had higher area ratios of both phloem and xylem and more developed vascular tissues thanZhengdu’. The three-dimensional reconstructed skeleton of the xylem from X-ray computed tomography scanning revealed greater intervessel connectivity inZhengdu’ than inPY-9’, which could contribute to the more vigorous growth ofZhengdu’. This study thus provides the first comparison of the microstructural properties of xylem elements between a dwarfing-type and vigorous-type pear rootstock, providing new insights into the dwarfing mechanism in pear and facilitating breeding of dwarf pear rootstocks to increase crop productivity.
基金supported by Chongqing Natural Science Foundation General Project(cstc2021jcyi msxmX0069)Chongqing Social Science Planning Project(2022NDYB196).
文摘Background:The prevalence of multimorbidity is increasing,with a notable shift towards younger age groups.Methods:Convenience sampling was employed to select 15,988 young and middle-aged adults in Chongqing as the study population.The Apriori algorithm was used to identify the multimorbidity patterns within this population,while an unordered binary logistic regression model was applied to assess the association between sleep,diet and the risk of multimorbidity.Results:The study population had an average age of 39.2±10.1 years.Apriori association rules revealed that the most prevalent binary chronic disease multimorbidity pattern was dyslipidaemia+hypertension(14.78%),while the most common ternary chronic disease multimorbidity pattern was diabetes+dyslipidaemia+hypertension(9.66%).The logistic regression analysis revealed that a lower rating of sleep quality was associated with an elevated risk of multimorbidity(odds ratio(OR)=1.17,95%confidence interval(CI):1.01,1.36).Individuals who adhere to a meat-based diet(OR=1.45,95%CI:1.25,1.68)and those with elevated salt intake(OR=1.22,95%CI:1.01,1.47)were also observed to have an increased risk of multimorbidity.Additionally,a greater likelihood of multimorbidity was observed among those following a spicy diet(OR=1.3,95%CI:1.11,1.52)and consuming more oil(OR=1.16,95%CI:1.01,1.33).Conclusion:A poor sleep quality and a dietary preference for meat-based,salt,spicy and oils were found to be associated with an increased risk of multimorbidity progression among young and middle-aged populations.It is recommended that young and middle-aged adults should pay attention not only to sleep duration but also to sleep quality and improve dietary habits to reduce the likelihood of multimorbidity.
基金This work was supported by National Natural Science Foundation of China(21825103,11774044,52072059)the Hubei Provincial Natural Science Foundation of China(2019CFA002)+1 种基金the Fundamental Research Funds for the Central Universities(2019kfyXMBZ018 and 2020kfyXJJS050)We also thank the technical support from Analytical and Testing Center in Huazhong University of Science and Technology.
文摘Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inherent strong covalent bonds,the direct synthesis of 2D planar structure from nonlayered materials,especially for the realization of large-size ultrathin 2D nonlayered materials,is still a huge challenge.Here,a general atomic substitution conversion strategy is proposed to synthesize large-size,ultrathin nonlayered 2D materials.Taking nonlayered CdS as a typical example,large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method,where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method.The size and thickness of CdS flakes can be controlled by the CdI2 precursor.The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS,which has been evidenced by experiments and theoretical calculations.The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials,providing a bridge between layered and nonlayered materials,meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.
基金the financial support from the National Natural Science Foundation of China (Grant No. 51672145)
文摘To obtain high-performance Al-Si-based cast alloys,refinement and modification of Si phases are required.An Al-12Si/ZnS powder inoculant was designed and fabricated using a chemical bath deposition method.The efficiency of the inoculant for modifying the eutectic Si phase in as-cast Al-12Si alloy was studied.Results show that Al-12Si/ZnS powder can significantly refine the eutectic Si in Al-Si cast alloys.The best refinement effect for eutectic Si is achieved with 17.5wt.%Al-12Si/ZnS powder.Coarse long needle-shaped eutectic Si with a length of 18μm was modified into approximately spherical shape with a diameter of 6.53μm,which is evenly distributed throughout the alloy.The E2EM model calculation indicates that the inter-plane misfit(F_(p))and inter-atomic spacing misfit(F_(r))between ZnS and Si are all less than 0.5%,which confirms that ZnS is a potential nucleation site for Si phase.The hardness,tensile strength,and elongation of Al-12Si alloys modified with 17.5%Al-12Si/ZnS powder increase 6.30%,16.18%and 55.45%,respectively,compared to the unmodified Al-12Si alloy.The fracture behavior of the alloy with 17.5wt.%Al-12Si/ZnS powder is dominated by transgranular fracture supplemented by intergranular fracture.