The use of iron ores bearing titanium as a raw material is an effective measure to prevent hearth erosion and prolong the life of a blast furnace. In this research, the effect of titanium content on the precipitation ...The use of iron ores bearing titanium as a raw material is an effective measure to prevent hearth erosion and prolong the life of a blast furnace. In this research, the effect of titanium content on the precipitation behaviors of high-melting phases of carbon-saturated molten pig iron were studied by confocal scanning laser microscopy. The results showed that, when the titanium content was less than 0.25 wt%,Fe_3C was precipitated as a single phase from the molten carbon-saturated iron. The growth rate of the precipitated Fe_3C crystals was very high, reaching 7387 μm^2/s. When the titanium content in the molten pig iron was greater than 0.47 wt%, TiC crystals precipitated first. The shape and size of the precipitated TiC crystals did not obviously change. After TiC was precipitated, the fluidity of the molten pig iron worsened. With a decrease in temperature, Fe_3C was also precipitated but the growth rate of Fe_3C was limited by the presence of the first precipitated TiC phase. The crystal size of the precipitated Fe_3C was much smaller than that of pure Fe_3C.展开更多
The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace(BF) slag was studied using confocal scanning laser microscopy(CSLM). Results showed that perovskite was the primary ...The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace(BF) slag was studied using confocal scanning laser microscopy(CSLM). Results showed that perovskite was the primary phase formed during the cooling of slag. On the slag surface, the growth of perovskite proceeded via the successive production of quasi-particles along straight lines, which further extended in certain directions. The morphology and structure of perovskite was found to vary as a function of cooling rate. At cooling rates of 10 and 30 K/min, the dendritic arms of perovskite crossed obliquely, while they were orthogonal at a cooling rate of 20 K/min and hexagonal at cooling rates of 40 and 50 K/min. These three crystal morphologies thus obtained at different cooling rates respectively corresponded to the orthorhombic, cubic and hexagonal crystal structures of perovskite. The observed change in the structure of perovskite could probably be attributed to the deficiency of O^2-, when Ti2O3 was involved in the formation of perovskite.展开更多
The formation behavior of CaTiO3 during electro-deoxidization of ilmenite concentrate to prepare Fe–Ti alloy was investigated by experiments and simulation.The results indicate that the formation and decomposition of...The formation behavior of CaTiO3 during electro-deoxidization of ilmenite concentrate to prepare Fe–Ti alloy was investigated by experiments and simulation.The results indicate that the formation and decomposition of intermediate products,CaTiO3,are inevitable steps during electro-deoxidization of ilmenite concentrate.CaTiO3 can be generated through the hydrolyzation of molten salt and electrochemistry reaction during electrochemical process.The main reason for the generation of CaTiO3 is the electrochemistry reaction between Ca^2+ from molten salt and TiO2 in the cathode.With the proceeding of the electro-deoxidization,CaTiO3 is further electrolyzed to form titanium sub-oxide.The current efficiency can be improved when CaTiO3 forms in the cathode by adding CaCO3 during sintering process.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51674054)the Open Foundation of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization of China
文摘The use of iron ores bearing titanium as a raw material is an effective measure to prevent hearth erosion and prolong the life of a blast furnace. In this research, the effect of titanium content on the precipitation behaviors of high-melting phases of carbon-saturated molten pig iron were studied by confocal scanning laser microscopy. The results showed that, when the titanium content was less than 0.25 wt%,Fe_3C was precipitated as a single phase from the molten carbon-saturated iron. The growth rate of the precipitated Fe_3C crystals was very high, reaching 7387 μm^2/s. When the titanium content in the molten pig iron was greater than 0.47 wt%, TiC crystals precipitated first. The shape and size of the precipitated TiC crystals did not obviously change. After TiC was precipitated, the fluidity of the molten pig iron worsened. With a decrease in temperature, Fe_3C was also precipitated but the growth rate of Fe_3C was limited by the presence of the first precipitated TiC phase. The crystal size of the precipitated Fe_3C was much smaller than that of pure Fe_3C.
基金financially supported by the National Natural Science Foundation of China(No.51090383)the Fundamental Research Funds for the Central Universities of China(No.CDJZR12130049)
文摘The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace(BF) slag was studied using confocal scanning laser microscopy(CSLM). Results showed that perovskite was the primary phase formed during the cooling of slag. On the slag surface, the growth of perovskite proceeded via the successive production of quasi-particles along straight lines, which further extended in certain directions. The morphology and structure of perovskite was found to vary as a function of cooling rate. At cooling rates of 10 and 30 K/min, the dendritic arms of perovskite crossed obliquely, while they were orthogonal at a cooling rate of 20 K/min and hexagonal at cooling rates of 40 and 50 K/min. These three crystal morphologies thus obtained at different cooling rates respectively corresponded to the orthorhombic, cubic and hexagonal crystal structures of perovskite. The observed change in the structure of perovskite could probably be attributed to the deficiency of O^2-, when Ti2O3 was involved in the formation of perovskite.
基金financially supported by the Fundamental Research Funds for the Central Universities of China (No.CDJZR12130049)Chongqing University Postgraduates’ Science and Innovation Fund (No.CDJXS12131105)
文摘The formation behavior of CaTiO3 during electro-deoxidization of ilmenite concentrate to prepare Fe–Ti alloy was investigated by experiments and simulation.The results indicate that the formation and decomposition of intermediate products,CaTiO3,are inevitable steps during electro-deoxidization of ilmenite concentrate.CaTiO3 can be generated through the hydrolyzation of molten salt and electrochemistry reaction during electrochemical process.The main reason for the generation of CaTiO3 is the electrochemistry reaction between Ca^2+ from molten salt and TiO2 in the cathode.With the proceeding of the electro-deoxidization,CaTiO3 is further electrolyzed to form titanium sub-oxide.The current efficiency can be improved when CaTiO3 forms in the cathode by adding CaCO3 during sintering process.