期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Preparation and Characterization of Nanocrystalline Cellulose/Poly(lactic acid) Composite Membranes 被引量:1
1
作者 meichun ding ChenWei Li FuShan Chen 《Paper And Biomaterials》 2017年第3期28-34,共7页
Nanocrystalline cellulose(NCC)/poly(lactic acid)(PLLA) composite membranes were prepared by the solution casting method.Physical and chemical modifications were performed to improve the compatibility of NCC and PLLA.T... Nanocrystalline cellulose(NCC)/poly(lactic acid)(PLLA) composite membranes were prepared by the solution casting method.Physical and chemical modifications were performed to improve the compatibility of NCC and PLLA.The results indicated that the NCC dispersibility of the composite membranes with chemical modification were superior to that of the composite membranes with physical modification.Moreover,the chemical modification NCC not only had a large effect on the nucleation and growth of the crystals,but also affected the crystal forms of PLLA.This was because chemical reactions took place between the silicone of silane coupling agent(KH-570) and the hydroxyl groups of NCC during blending.The chemical modification NCC could be dispersed stably in the PLLA matrix,and it played the role of a nucleating agent. 展开更多
关键词 NCC PLLA composite membranes MODIFICATION
下载PDF
Multifunctional high-performance pressure/proximity/temperature sensors enabled by hybrid resistive-supercapacitive response
2
作者 Huijun Kong Zhongqian Song +6 位作者 meichun ding Changxiang Shao Jiahui Yu Baolei Wang Weiyan Li Chenwei Li Li Niu 《Nano Research》 SCIE EI CSCD 2024年第6期5604-5613,共10页
The issue of sensitivity attenuation in high-pressure region has been a persistent concern for pressure-sensitive electronic skins.In order to tackle such trade-off between sensitivity and linear range,herein,a hybrid... The issue of sensitivity attenuation in high-pressure region has been a persistent concern for pressure-sensitive electronic skins.In order to tackle such trade-off between sensitivity and linear range,herein,a hybrid piezoresistive-supercapacitive(HRSC)strategy is proposed via introducing a piezoresistive porous aerogel layer between the charge collecting electrodes and iontronic films of the pressure sensors.Surprisingly,the HRSC-induced impedance regulation and supercapacitive behavior contribute to significant mitigation in sensitivity attenuation,achieving high sensitivity across wide linear range(44.58 kPa^(−1)from 0 to 3 kPa and 23.6 kPa^(−1)from 3 to 12 kPa).The HRSC pressure sensor exhibits a low detection limit of 1 Pa,fast responsiveness(~130 ms),and excellent cycling stability,allowing to detect tiny pressure of air flow,finger bending,and human respiration.Meanwhile,the HRSC sensor exhibits exceptional perception capabilities for proximity and temperature,broadening its application scenarios in prosthetic perception and electronic skin.The proposed HRSC strategy may boost the ongoing research on structural design of high-performance and multimodal electronic sensors. 展开更多
关键词 multimodal sensor pressure sensor high sensitivity MXene/poly(3 4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)aerogel structural design
原文传递
Highly efficient three-dimensional solar evaporator for zero liquid discharge desalination of high-salinity brine
3
作者 meichun ding Demin Zhao +6 位作者 Panpan Feng Baolei Wang Zhenying Duan Rui Wei Yuxi Zhao Chen-Yang Liu Chenwei Li 《Carbon Energy》 SCIE EI CAS 2024年第9期52-65,共14页
Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater,but salt accumulation on the evaporator surface hinders its performance and sustainability.In this study,we report... Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater,but salt accumulation on the evaporator surface hinders its performance and sustainability.In this study,we report a simple and green strategy to fabricate a three-dimensional porous graphene spiral roll(3GSR)that enables highly efficient solar evaporation,salt collection,and water production from near-saturated brine with zero liquid discharge(ZLD).The 3GSR design facilitates energy recovery,radial brine transport,and directional salt crystallization,thereby resulting in an ultrahigh evaporation rate of 9.05 kg m^(-2) h^(-1) in 25 wt%brine under 1-sun illumina-tion for 48 h continuously.Remarkably,the directional salt crystallization on its outer surface not only enlarges the evaporation area but also achieves an ultrahigh salt collection rate of 2.92 kg m^(-2) h^(-1),thus enabling ZLD desalination.Additionally,3GSR exhibits a record-high water production rate of 3.14 kg m^(-2) h^(-1) in an outdoor test.This innovative solution offers a highly efficient and continuous solar desalination method for water production and ZLD brine treatment,which has great implications for addressing global water scarcity and environmental issues arising from brine disposal. 展开更多
关键词 graphene aerogels graphene composites solar desalination solar-driven interfacial evaporation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部