Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current resea...Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current research on the level set method for structure topology opti- mization. The method proposed employs a level set model to implicitly describe the material interfaces of the microstructure and a Hamilton-Jacobi equation to continuously evolve the ma- terial interfaces until an optimal design is achieved. Meanwhile, the moving velocities of level set are obtained by conducting sensitivity analysis and gradient projection. Besides, how to handle the violated constraints is also discussed in the level set method for topological optimization, and a return-mapping algorithm is constructed. Numerical examples show that the method exhibits outstanding ?exibility of handling topological changes and ?delity of material interface represen- tation as compared with other conventional methods in literatures.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 59805001 and 10332010) and the KeyScience and Technology Research Project of Ministry of Education of China (No. 104060).
文摘Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current research on the level set method for structure topology opti- mization. The method proposed employs a level set model to implicitly describe the material interfaces of the microstructure and a Hamilton-Jacobi equation to continuously evolve the ma- terial interfaces until an optimal design is achieved. Meanwhile, the moving velocities of level set are obtained by conducting sensitivity analysis and gradient projection. Besides, how to handle the violated constraints is also discussed in the level set method for topological optimization, and a return-mapping algorithm is constructed. Numerical examples show that the method exhibits outstanding ?exibility of handling topological changes and ?delity of material interface represen- tation as compared with other conventional methods in literatures.