期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Protic vs aprotic ionic liquid for CO2 fixation:A simulation study 被引量:4
1
作者 Wenzhong Sun meichen wang +4 位作者 Yaqin Zhang Weilu Ding Feng Huo Li Wei Hongyan He 《Green Energy & Environment》 SCIE CSCD 2020年第2期183-194,共12页
The cycloaddition of CO2 with epoxides catalyzed by ionic liquids(ILs)has been a widely ongoing studied hot topic over the years.Recent experimental research has shown that the protic ionic liquids(PILs)behave stronge... The cycloaddition of CO2 with epoxides catalyzed by ionic liquids(ILs)has been a widely ongoing studied hot topic over the years.Recent experimental research has shown that the protic ionic liquids(PILs)behave stronger hydrogen proton donating ability than aprotic ionic liquids(APILs),and can effectively catalyze the cycloaddition of CO2.Unfortunately,the mechanistic explanation remains primarily unraveled.Herein,a detailed simulation study on the cycloaddition reaction catalyzed by PIL([HDBU][Mim])in comparison with APIL([MeDBU][Mim])re-action catalysts was conducted,including the three-step route(ring-opening of PO(propylene oxide),insertion of CO2 and ring-closure of propylene carbonate(PC))and two-step route(simultaneously ring-opening of PO and addition of CO2,and then ring-closure of PC).Based on the activation energy barrier of the rate-determining step,PIL preferentially activates PO as the optimal route for the reaction with the energy barrier of 23.2 kcal mol-1,while that of APIL is 31.2 kcal mol-1.The role of[HDBU]+in the reaction was also explored and found that the direct formation of intermolecular hydrogen bond(H-bond)between[HDBU]+and the reactants(PO+CO2)was unfavorable for the reaction,while the cooperation with the anion[Mim]-to assist indirectly was more conducive.To fully consider the reaction microenvironment of ILs,ONIOM calculation was used to study the solvent effect.At last,the above conclusions were further verified by the analysis of intermediates with charge,non-covalent interaction(NCI),and atoms in molecules(AIM)methods.The computational findings show that ILs studied in this work have dual functions of catalyst and solvent,enabling a microscopic understanding of the ILs catalyst for CO2 utilization as well as providing guidance for the rational design of more efficient ILs-based catalysts. 展开更多
关键词 Ionic liquid CO2 conversion CYCLOADDITION Synergistic catalysis DFT calculations
下载PDF
Hydrochemical characteristics and water quality evaluation of shallow groundwater in Suxian mining area,Huaibei coalfield,China 被引量:3
2
作者 Hao Yu Herong Gui +5 位作者 Honghai Zhao meichen wang Jun Li Hongxia Fang Yaqi Jiang Yaru Zhang 《International Journal of Coal Science & Technology》 EI CAS 2020年第4期825-835,共11页
The aim of this study is to evaluate the hydrogeochemical characteristics and water environmental quality of shallow groundwater in the Suxian mining area of Huaibei coalfield,China.The natural formation process of sh... The aim of this study is to evaluate the hydrogeochemical characteristics and water environmental quality of shallow groundwater in the Suxian mining area of Huaibei coalfield,China.The natural formation process of shallow groundwater in Suxian is explored using Piper trilinear charts and Gibbs diagrams,and by examining the ratios between the major ions.United States Salinity Laboratory(USSL)charts,Wilcox diagrams,and the water quality index(WQI)are further employed to quantify the differences in water quality.The results reveal that the main hydrochemical facies of groundwater are HC03-Ca,and that silicate dissolution is the main factor controlling the ion content in shallow groundwater.The USSL charts and Wilcox diagrams show that most of the water samples would be acceptable for use in irrigation systems.The WQI results for each water sample are compared and analyzed,and the quality of groundwater samples around collapse ponds is found to be relatively poor. 展开更多
关键词 Shallow groundwater Hydrochemical characteristics Water-rock interaction Evaluation of water environment quality Suxian mining area
下载PDF
Kinetics of glyphosate and aminomethylphosphonic acid sorption onto montmorillonite clays in soil and their translocation to genetically modified corn
3
作者 meichen wang Kelly J Rivenbark Timothy D Phillips 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期669-680,共12页
The co-occurrence of glyphosate(GLP)and aminomethylphosphonic acid(AMPA)in contaminated water,soil,sediment and plants is a cause for concern due to potential threats to the ecosystem and human health.A major route of... The co-occurrence of glyphosate(GLP)and aminomethylphosphonic acid(AMPA)in contaminated water,soil,sediment and plants is a cause for concern due to potential threats to the ecosystem and human health.A major route of exposure is through contact with contaminated soil and consumption of crops containing GLP and AMPA residues.However,clay-based sorption strategies for mixtures of GLP and AMPA in soil,plants and garden produce have been very limited.In this study,in vitro soil and in vivo genetically modified corn models were used to establish the proof of concept that the inclusion of clay sorbents in contaminated soils will reduce the bioavailability of GLP and AMPA in soils and their adverse effects on plant growth.Effects of chemical concentration(1–10 mg/kg),sorbent dose(0.5%-3%in soil and 0.5%-1%in plants)and duration(up to 28 days)on sorption kinetics were studied.The time course results showed a continuous GLP degradation to AMPA.The inclusion of calcium montmorillonite(CM)and acid processed montmorillonite(APM)clays at all doses significantly and consistently reduced the bioavailability of both chemicals from soils to plant roots and leaves in a dose-and time-dependent manner without detectable dissociation.Plants treated with 0.5%and 1%APM inclusion showed the highest growth rate(p≤0.05)and lowest chemical bioavailability with up to 76%reduction in roots and57%reduction in leaves.Results indicated that montmorillonite clays could be added as soil supplements to reduce hazardous mixtures of GLP and AMPA in soils and plants. 展开更多
关键词 GLYPHOSATE AMPA Adsorption Soil remediation Plant Hydroponic system
原文传递
Decreased bioavailability of aminomethylphosphonic acid(AMPA)in genetically modified corn with activated carbon or calcium montmorillonite clay inclusion in soil 被引量:2
4
作者 Sara E.Hearon meichen wang +1 位作者 Thomas J.McDonald Timothy D.Phillips 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第2期131-143,共13页
The widespread use of pesticides has resulted in detectable residues throughout the environment,sometimes at concentrations well above regulatory limits.Therefore,the development of safe,effective,field-practical,and ... The widespread use of pesticides has resulted in detectable residues throughout the environment,sometimes at concentrations well above regulatory limits.Therefore,the development of safe,effective,field-practical,and economically feasible strategies to mitigate the effects of pesticides is warranted.Glyphosate is an organophosphorus herbicide that is degraded to aminomethylphosphonic acid(AMPA),a toxic and persistent metabolite that can accumulate in soil and sediment and translocate to plants.In this study,we investigated the binding efficacy of activated carbon(AC)and calcium montmorillonite(CM)clay to decrease AMPA bioavailability from soil and AMPA translocation to plants.Adsorption isotherms and thermodynamic studies on AC and CM were conducted and showed tight binding(enthalpy values>-20 k J/mol)for AMPA with high capacities(0.25 mol/kg and 0.38 mol/kg,respectively),based on derivations from the Langmuir model.A hydra assay was utilized to indicate toxicity of AMPA and the inclusion of 1%AC and CM both resulted in 90%protection of the hydra(**p≤0.01).Further studies in glyphosate-contaminated soil showed that AC and CM significantly reduced AMPA bioavailability by 53%and 44%,respectively.Results in genetically modified(GM)corn showed a conversion of glyphosate to AMPA in roots and sprouts over a 10-day exposure duration.Inclusion of AC and CM reduced AMPA residues in roots and sprouts by 47%-61%.These studies collectively indicate that AC and CM are effective sorbents for AMPA and could be used to reduce AMPA bioavailability from soil and AMPA residues in GM corn plants. 展开更多
关键词 GLYPHOSATE AMPA Activated carbon Calcium montmorillonite SORBENT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部