期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Coupled intramolecular/heterointerfacial electron transfer in polyelectrolyte-shielded Iso-type black phosphorus hetero-structure boosts oxygen reduction kinetics
1
作者 Zhongke Yuan Jing Li +3 位作者 Zhengsong Fang meijia yang Kancheng Mai Dingshan Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期468-476,I0011,共10页
Searching new structured black phosphorus(BP)and exploring intriguing functions and applications have become a hot topic so far.Here,we introduce a novel Iso-type black phosphorus heterostructure guided by first princ... Searching new structured black phosphorus(BP)and exploring intriguing functions and applications have become a hot topic so far.Here,we introduce a novel Iso-type black phosphorus heterostructure guided by first principle calculation,which features unique heterointerface and electronic coupling interaction via stacking assembly of exfoliated black phosphorus(EBP)and amine-functionalized EBP(N-EBP).Inspired by the theoretical results,we constructed the Iso-type heterostructure comprising of ultrathin exfoliated few-layered EBP and N-EBP,both of which were derived from identical bulk BP.The purposive amine-functionalization not only creates positively-charged P atoms on N-EBP as effective active sites via N-induced intramolecular electron transfer(IET)but also endows N-EBP with lower work function relative to EBP,while the unique EBP/N-EBP Iso-type heterostructure engenders directional heterointerfacial electron transfer(HET).The coupled IET/HET effects optimize the charge redistribution to afford favorable O_(2)adsorption.In this case,our unique strategy for the first time exploits the inherent catalytic capability of BP toward the oxygen reduction reaction(ORR)and enables the first use of BP as metal-free ORR catalysts for Zn-air cells.The newly-designed heterostructure facilitates a 4-e^(-)transfer ORR relative to inactive EBP or N-EBP.Importantly,the polymer-shielded heterostructure acts as efficient air electrodes to endow a primary Zn-air cell with high stability,large capacity and high energy density—superior to the commercial Pt/C-enabled cell.This study as the first report on metal-free BP-based ORR catalysts and air electrodes not only extends BP's application scopes but also renders new insight toward design of electronically-coupled superstructures for energy-related applications. 展开更多
关键词 Black phosphorus Iso-type heterostructure Intramolecular electron transfer Heterointerfacial electron transfer Oxygen reduction
下载PDF
Mesoporous Ag nanocubes synthesized via selectively oxidative etching at room temperature for surface- enhanced Raman spectroscopy 被引量:4
2
作者 Lin Gan meijia yang +6 位作者 Xi Ke Guofeng Cui Xudong Chen Shiva Gupta William Kellogg Drew Higgins Gang Wu 《Nano Research》 SCIE EI CAS CSCD 2015年第7期2351-2362,共12页
Silver nanocubes enriched with {100} facets have been extensively used for surface-enhanced Raman scattering. Herein, we report a new water-phase synthesis method for weU-defined Ag nanocubes with tunable sizes via a ... Silver nanocubes enriched with {100} facets have been extensively used for surface-enhanced Raman scattering. Herein, we report a new water-phase synthesis method for weU-defined Ag nanocubes with tunable sizes via a two-step procedure at room temperature. First, irregularly shaped Ag nanoparticles (INPs) were prepared by reducing silver ammonia solution using ethylal. Second, the agglomerated INPs were selectively etched with HNO3 and C1- to yield {100} facet-rich mesoporous Ag nanocubes. The mechanism of Ag-nanocube formation and growth was investigated in detail by elucidating the involved chemical reactions and physical changes at each step during the synthesis. The addition of C1- anions was responsible for facilitating Ag nanoparticle growth by removing surface-adsorbed Ag+ species, thereby eliminating inter-particle repulsive forces. This agglomeration was found crucial for the subsequent selective oxidation of Ag nanoparticles because the protective agent used, polyvinylpyrrolidone (PVP), was the most effective one for adsorption on the surfaces of Ag nanoparticles of size greater than approximately 50 nm. Importantly mesopores were found inside the Ag nanocubes; this can be attributed to the unavoidable imperfect packing during the agglomeration of INPs. The newly prepared Ag nanocubes were further used to enhance the Raman signal of rhodamine 6G, which is capable of reducing the detection limitation to 10-16 mol·L-1. 展开更多
关键词 AG nanocube selective ETCHING water phase synthesis room tempersture surface-enhanced raman scattering(sers)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部