期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
New Strategy for Boosting Cathodic Performance of Protonic Ceramic Fuel Cells Through Incorporating a Superior Hydronation Second Phase 被引量:1
1
作者 Chuan Zhou Xixi Wang +12 位作者 Dongliang Liu meijuan fei Jie Dai Daqin Guan Zhiwei Hu Linjuan Zhang Yu Wang Wei Wang Ryan O'Hayre San Ping Jiang Wei Zhou Meilin Liu Zongping Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期83-92,共10页
For protonic ceramic fuel cells,it is key to develop material with high intrinsic activity for oxygen activation and bulk proton conductivity enabling water formation at entire electrode surface.However,a higher water... For protonic ceramic fuel cells,it is key to develop material with high intrinsic activity for oxygen activation and bulk proton conductivity enabling water formation at entire electrode surface.However,a higher water content which benefitting for the increasing proton conductivity will not only dilute the oxygen in the gas,but also suppress the O_(2)adsorption on the electrode surface.Herein,a new electrode design concept is proposed,that may overcome this dilemma.By introducing a second phase with high-hydrating capability into a conventional cobalt-free perovskite to form a unique nanocomposite electrode,high proton conductivity/concentration can be reached at low water content in atmosphere.In addition,the hydronation creates additional fast proton transport channel along the two-phase interface.As a result,high protonic conductivity is reached,leading to a new breakthrough in performance for proton ceramic fuel cells and electrolysis cells devices among available air electrodes. 展开更多
关键词 CATHODE high-hydrating capability proton conductivity protonic ceramic fuel cells
下载PDF
Active Cu and Fe Nanoparticles Codecorated Ruddlesden-Popper-Type Perovskite as Solid Oxide Electrolysis Cells Cathode for CO_(2)Splitting
2
作者 Dongliang Liu Hang Shang +9 位作者 Chuan Zhou Jie Miao Daxiang Xue Zeping Chen meijuan fei Fengli Liang Qiang Niu Ran Ran Wei Zhou Zongping Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期215-223,共9页
Solid oxide electrolysis cells(SOECs),displaying high current density and energy efficiency,have been proven to be an effective technique to electrochemically reduce CO_(2)into CO.However,the insufficiency of cathode ... Solid oxide electrolysis cells(SOECs),displaying high current density and energy efficiency,have been proven to be an effective technique to electrochemically reduce CO_(2)into CO.However,the insufficiency of cathode activity and stability is a tricky problem to be addressed for SOECs.Hence,it is urgent to develop suitable cathode materials with excellent catalytic activity and stability for further practical application of SOECs.Herein,a reduced perovskite oxide,Pr_(0.35)Sr_(0.6)Fe_(0.7)Cu_(0.2)Mo_(0.1)O_(3-δ)(PSFCM0.35),is developed as SOECs cathode to electrolyze CO_(2).After reduction in 10%H_(2)/Ar,Cu and Fe nanoparticles are exsolved from the PSFCM0.35 lattice,resulting in a phase transformation from cubic perovskite to Ruddlesden-Popper(RP)perovskite with more oxygen vacancies.The exsolved metal nanoparticles are tightly attached to the perovskite substrate and afford more active sites to accelerate CO_(2)adsorption and dissociation on the cathode surface.The significantly strengthened CO_(2)adsorption capacity obtained after reduction is demonstrated by in situ Fourier transform-infrared(FT-IR)spectra.Symmetric cells with the reduced PSFCM0.35(R-PSFCM0.35)electrode exhibit a low polarization resistance of 0.43Ωcm^(2)at 850℃.Single electrolysis cells with the R-PSFCM0.35 cathode display an outstanding current density of 2947 mA cm^(-2)at 850℃and 1.6 V.In addition,the catalytic stability of the R-PSFCM0.35 cathode is also proved by operating at 800℃with an applied constant current density of 600 mA cm^(-2)for 100 h. 展开更多
关键词 CATHODE CO_(2)reduction nanoparticles decoration solid oxide electrolysis cells
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部