期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Pt/WO_3/C nanocomposite with parallel WO_3 nanorods as cathode catalyst for proton exchange membrane fuel cells 被引量:4
1
作者 meiling dou Ming Hou +4 位作者 Zhilin Li Feng Wang Dong Liang Zhigang Shao Baolian Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期39-44,共6页
Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Electrochemical results and single cell tests show that an en... Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Electrochemical results and single cell tests show that an enhanced activity for the oxygen reduction reaction (ORR) is obtained for the Pt/WO3/C catalyst compared with Pt/C. The higher catalytic activity might be ascribed to the improved Pt dispersion with smaller particle sizes. The Pt/WO3/C catalyst also exhibits a good electrochemical stability under potential cycling. Thus, the Pt/WO3/C catalyst can be used as a potential PEMFC cathode catalyst. 展开更多
关键词 tungsten oxides Pt nanoparticles CATALYST proton exchange membrane fuel cells
下载PDF
Porous microtubes of nickel-cobalt double oxides as non-enzymatic hydrogen peroxide sensors
2
作者 Qin Li Jin Niu +2 位作者 meiling dou Zhengping Zhang Feng Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第3期1181-1185,共5页
Non-enzymatic electrochemical sensors for the determination of hydrogen peroxide(H_(2)O_(2))have attracted more and more concerns.A series of nickel and cobalt double oxides(Ni_(x)Co_(y)-DO)with the different ratios o... Non-enzymatic electrochemical sensors for the determination of hydrogen peroxide(H_(2)O_(2))have attracted more and more concerns.A series of nickel and cobalt double oxides(Ni_(x)Co_(y)-DO)with the different ratios of Ni/Co have been prepared by a polyol-mediated solvothermal method for H_(2)O_(2)detection.The obtained products exhibit honeycomb-like open porous microtubes constituted with the low-dimensional nanostructured Ni_(x)Co_(y)-DO blocks after the calcination treatment.Compared with nickel oxides,the introduced Co ions in Ni_(x)Co_(y)-DO can induce the production of surficial oxygen vacancies,and further enhance the electrode surface activity.In particular,the NiCo-DO sample(with an atomic ratio of Ni/Co=4:3)shows the richest surficial oxygen vacancies and presents the highest H_(2)O_(2)detection activity among all the as-prepared samples,demonstrating an excellent sensitivity of698.60μAL mmol^(-1)cm^(-2)(0~0.4 mmol/L),low detection limit(0.28μmol/L,S/N=3),as well as long stability,high selectivity and good reproducibility.This work lends a new impetus to the potential application of double metal oxides for the next generation of non-enzymatic sensors. 展开更多
关键词 Double metal oxides Porous microtubes Oxygen vacancies Hydrogen peroxide detection Electrochemical sensors
原文传递
Effect of hydrogen impurities on hydrogen oxidation activity of Pt/C catalyst in proton exchange membrane fuel cells
3
作者 Yufeng Qin Chaoyong Sun +4 位作者 Shaojie Ke Rou Wen Yifan Wang Jing Ji meiling dou 《Clean Energy》 EI CSCD 2023年第1期139-147,共9页
High-purity of hydrogen is vital to the guarantee of end usage in proton exchange membrane fuel cell(PEMFC)electric vehicles(EVs)with superior durability and low expense.However,the currently employed hydrogen,primari... High-purity of hydrogen is vital to the guarantee of end usage in proton exchange membrane fuel cell(PEMFC)electric vehicles(EVs)with superior durability and low expense.However,the currently employed hydrogen,primarily from fossil fuel,still contains some poisoning impurities that significantly affect the durability of PEMFCs.Here,we investigate the poisoning effect of several typical hydrogen impurities(S^(2-),Cl^(-),HCOO^(-)and CO_(3)^(2-))on the hydrogen oxidation reaction(HOR)of the state-of-the-art carbon-supported platinum(Pt/C)catalyst used in the PEMFC anode.Electrochemical results indicate that the electrochemically active surface area of Pt/C is hampered by these hydrogen impurities with reduced effective Pt reactive sites due to the competitive adsorption against hydrogen at Pt sites showing the extent of the poisoning on Pt sites in the order:S^(2-)>Cl^(-)>HCOO^(-)>CO_(3)^(2-).Density functional theory calculations reveal that the adsorption energy of S2-on Pt(111)is greater than that of Cl^(-),HCOO^(-)and CO_(2),and the electronic structure of Pt is found to be changed due to the adsorption of impurities showing the downshift of the d-band centre of Pt that weakens the adsorption of hydrogen on the Pt sites.This work provides valuable guidance for future optimization of hydrogen quality and also emphasizes the importance of anti-poisoning anode catalyst development,especially towards H_(2)S impurities that seriously affect the durability of PEMFCs. 展开更多
关键词 hydrogen impurity poisoning effect electronic structure PT/C hydrogen oxidation catalysis fuel cell
原文传递
Effect of load-cycling amplitude on performance degradation for proton exchange membrane fuel cell
4
作者 Kun Wang Ning Li +4 位作者 Yanan Yang Shaojie Ke Zhengping Zhang meiling dou Feng Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第10期3159-3163,共5页
Durability is one of the critical issues to restrict the commercialization of proton exchange membrane fuel cells(PEMFCs) for the vehicle application.The practical dynamic operation significantly affects the PEMFCs du... Durability is one of the critical issues to restrict the commercialization of proton exchange membrane fuel cells(PEMFCs) for the vehicle application.The practical dynamic operation significantly affects the PEMFCs durability by corroding its key components.In this work,the degradation behavior of a single PEMFC has been investigated under a simulated automotive load-cycling operation,with the aim of revealing the effect of load amplitude(0.8 and 0.2 A/cm2 amplitude for the current density range of0.1-0.9 and 0.1-0.3 A/cm^(2),respectively) on its performance degradation.A more severe degradation on the fuel cell performance is observed under a higher load amplitude of 0.8 A/cm^(2) cycling operation,with$10.5% decrease of cell voltage at a current density of 1.0 A/cm2.The larger loss of fuel cell performance under the higher load amplitude test is mainly due to the frequent fluctuation of a wider potential cycling.Physicochemical characterizations analyses indicate that the Pt nanoparticles in cathodic catalyst layer grow faster with a higher increase extent of particle size under this circumstance because of their repeated oxidation/reduction and subsequent dissolution/agglomeration process,resulting in the degradation of platinum catalyst and thus the cell performance.Additionally,the detected microstructure change of the cathodic catalyst layer also contributes to the performance failure that causes a distinct increase in mass transfer resistance. 展开更多
关键词 Proton exchange membrane fuel cell DURABILITY Load-cycling amplitude Degradation mechanism Platinum catalyst
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部