期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
π-Armendariz rings relative to a monoid
1
作者 Yao WANG meimei jiang Yanli REN 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第4期1017-1036,共20页
Let M be a monoid. A ring R is called M-π-Armendariz if whenever a = a1g1+ a292 + …+angn, β= b1h1 + b2h2 + …+ bmhm ∈ R[M] satisfy αβ ∈ nil(R[M]), then aibj ∈ nil(R) for all i, j. A ring R is called ... Let M be a monoid. A ring R is called M-π-Armendariz if whenever a = a1g1+ a292 + …+angn, β= b1h1 + b2h2 + …+ bmhm ∈ R[M] satisfy αβ ∈ nil(R[M]), then aibj ∈ nil(R) for all i, j. A ring R is called weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical. In this paper, we consider some extensions of M-Tr-Armendariz rings and further investigate their properties under the condition that R is weakly 2-primal. We prove that if R is an M-π-Armendariz ring then nil(R[M]) = nil(R)[M]. Moreover, we study the relationship between the weak zip-property (resp., weak APP-property, nilpotent p.p.-property, weak associated prime property) of a ring R and that of the monoid ring RIM] in case R is M-π-Armendariz. 展开更多
关键词 Monoid ring π-Armendariz ring M-π-Armendariz ring weakly 2-primal ring weak annihilator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部