期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Atomic Dispersed Hetero‑Pairs for Enhanced Electrocatalytic CO_(2)Reduction
1
作者 Zhaoyong Jin meiqi yang +13 位作者 Yilong Dong Xingcheng Ma Ying Wang Jiandong Wu Jinchang Fan Dewen Wang Rongshen Xi Xiao Zhao Tianyi Xu Jingxiang Zhao Lei Zhang David J.Singh Weitao Zheng Xiaoqiang Cui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期55-67,共13页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,in... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale. 展开更多
关键词 CO_(2)reduction reaction Atomic dispersed catalyst Hetero-diatomic pair Ad-desorption energy Linear scaling relation
下载PDF
Tuning precise numbers of supported nickel clusters on graphdiyne for efficient CO_(2)electroreduction toward various multi-carbon products 被引量:1
2
作者 meiqi yang Zhongxu Wang +5 位作者 Dongxu Jiao Yu Tian Yongchen Shang Lichang Yin Qinghai Cai Jingxiang Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期456-465,I0013,共11页
Compared to single-atom catalysts,supported metal clusters can exhibit enhanced activity and designated selectivity in heterogeneous catalysis due to their unique geometric and electronic features.Herein,by means of c... Compared to single-atom catalysts,supported metal clusters can exhibit enhanced activity and designated selectivity in heterogeneous catalysis due to their unique geometric and electronic features.Herein,by means of comprehensive density functional theory (DFT) computations,we systematically investigated the potential of several Ni clusters supported on graphdiyne (Ni_(x)/GDY,x=1–6) for CO_(2) reduction reaction (CO_(2)RR).Our results revealed that,due to the strong interaction between Ni atoms and sp-hybridized C atoms,these supported Ni clusters on GDY exhibit high stabilities and excellent electronic properties.In particular,according to the computed free energy profiles for CO_(2)RR on these Ni_(x)/GDY systems,the anchored Ni_(4) cluster was revealed to exhibit high CO_(2)RR catalytic activity with a small limiting potential and moderate kinetic barrier for C–C coupling,and CH_(4),C_(2)H_(5)OH,and C_(3)H_(7)OH were identified as the main products,which can be attributed to its strong capacity for CO_(2) activation due to its unique configuration and excellent electronic properties.Thus,by carefully controlling the precise numbers of atoms in sub-nano clusters,the spatially confined Ni clusters can perform as promising CO_(2)RR catalysts with high-efficiency and high-selectivity,which may provide a useful guidance to further develop novel and low-cost metal clusters-based catalysts for sustain CO_(2)conversion to valuable chemicals and fuels. 展开更多
关键词 CO_(2)reduction Supported metal clusters Graphdiyne Multi-carbon products Density functional theory
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部