Predicting and allocating surface water resources are becoming increasingly important tasks for addressing the risk of water shortages and challenges of climate change,especially in reservoir basins.However,surface wa...Predicting and allocating surface water resources are becoming increasingly important tasks for addressing the risk of water shortages and challenges of climate change,especially in reservoir basins.However,surface water resource management includes many systematic uncertainties and complexities that are difficult to address.Thus,advanced models must be developed to support predictive simulations and optimal allocations of surface water resources,which are urgently required to ensure regional water supply security and sustainable socioeconomic development.In this study,a soil and water assessment tool-based interval linear multi-objective programming(SWAT-ILMP)model was developed and integrated with climate change scenarios,SWAT,interval parameter programming,and multi-objective programming.The developed model was applied to the Xinfengjiang Reservoir basin in South China and was able to identify optimal allocation schemes for water resources under different climate change scenarios.In the forecast year 2025,the optimal water quantity for power generation would be the highest and account for∼60%of all water resources,the optimal water quantity for water supply would account for∼35%,while the optimal surplus water released from the reservoir would be the lowest at≤5%.In addition,climate change and reservoir initial storage would greatly affect the surplus water quantity but not the power generation or water supply quantity.In general,the SWAT-ILMP model is applicable and effective for water resource prediction and management systems.The results from different scenarios can provide multiple alternatives to support rational water resource allocation in the study area.展开更多
With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the character- ...With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the character- istics of energy consumption and related carbon emission, with the objective of saving energy, reducing carbon emission, and lessening environmental impact. Focusing on urban ecosystems, the biggest energy consumer, a method for estimating energy consumption and related carbon emission was established at the urban sector scale in this paper. Based on data for 1996-2010, the proposed method was applied to Beijing in a case study to analyze the consumption of different energy resources (i.e., coal, oil, gas, and electricity) and related carbon emission in different sectors (i.e., agriculture, industry, construction, transportation, household, and service sectors). The results showed that coal and oil contributed most to energy consumption and carbon emission among different energy resources during the study period, while the industrial sector consumed the most energy and emitted the most carbon among different sectors. Suggestions were put forward for energy conservation and emission reduction in Beijing. The analysis of energy consumption and related carbon emission at the sector scale is helpful for practical energy saving and emission reduction in urban ecosystems.展开更多
This study uses the HD and Ecolab modules of MIKE to simulate the hydrodynamic and water quality and predict the influence of shoreline changes in Bohai Bay, China. The study shows that shoreline changes weaken the re...This study uses the HD and Ecolab modules of MIKE to simulate the hydrodynamic and water quality and predict the influence of shoreline changes in Bohai Bay, China. The study shows that shoreline changes weaken the residual current and generate a counter-clockwise circulation south of Huanghua Port, thereby resulting in weak water exchange capacity and low pollutant-diffusing capacity. Shoreline changes reduce the area of Bohai Bay, resulting in a smaller tidal prism and further weakening the water exchange capacity. This situation is not conducive to the diffusion of pollutants, and therefore may lead to increased water pollution in the bay. Shoreline changes hinder the spread of runoff, weaken the dilution effect of the river on seawater, and block the spread of coastal residual Current, thereby resulting in increased salinity near the reclamation area. Shoreline changes lead to an increase in PO4-P concentration and decrease in DIN concentration. The value of N/P near the project decreases, thereby weakening the phosphorus-limited effect.展开更多
Industrial symbiosis is the quintessential characteristic of an eco-industrial park. To divide parks into different types, previous studies mostly focused on qualitative judgments, and failed to use metrics to conduct...Industrial symbiosis is the quintessential characteristic of an eco-industrial park. To divide parks into different types, previous studies mostly focused on qualitative judgments, and failed to use metrics to conduct quantitative research on the intemal structural or functional characteristics of a park. To analyze a park's structural attributes, a range of metrics from network analysis have been applied, but few researchers have compared two or more symbioses using multiple metrics. In this study, we used two metrics (density and network degree centraliza- tion) to compare the degrees of completeness and dependence of eight diverse but representative industrial symbiosis networks. Through the combination of the two metrics, we divided the networks into three types: weak completeness, and two forms of strong completeness, namely "anchor tenant" mutualism and "equality-oriented" mutualism. The results showed that the networks with a weak degree of completeness were sparse and had few connections among nodes; for "anchor tenant" mutualism, the degree of completeness was relatively high, but the affiliated members were too dependent on core members; and the members in "equality-oriented" mutualism had equal roles, with diverse and flexible symbiotic paths. These results revealed some of the systems' internal structure and how different structures influenced the exchanges of materials, energy, and knowledge among members of a system, thereby providing insights into threats that may destabilize the network. Based on this analysis, we provide examples of the advantages and effectiveness of recent improvement projects in a typical Chinese eco-industrial park (Shandong Lubei).展开更多
基金supported by the National Natural Science Foundation of China(Nos.72122004 and 52379005)GuangDong Basic and Applied Basic Research Foundation(2022A1515012023)the Academician Workstation Project of Dongguan(No.DGYSZ201806).
文摘Predicting and allocating surface water resources are becoming increasingly important tasks for addressing the risk of water shortages and challenges of climate change,especially in reservoir basins.However,surface water resource management includes many systematic uncertainties and complexities that are difficult to address.Thus,advanced models must be developed to support predictive simulations and optimal allocations of surface water resources,which are urgently required to ensure regional water supply security and sustainable socioeconomic development.In this study,a soil and water assessment tool-based interval linear multi-objective programming(SWAT-ILMP)model was developed and integrated with climate change scenarios,SWAT,interval parameter programming,and multi-objective programming.The developed model was applied to the Xinfengjiang Reservoir basin in South China and was able to identify optimal allocation schemes for water resources under different climate change scenarios.In the forecast year 2025,the optimal water quantity for power generation would be the highest and account for∼60%of all water resources,the optimal water quantity for water supply would account for∼35%,while the optimal surplus water released from the reservoir would be the lowest at≤5%.In addition,climate change and reservoir initial storage would greatly affect the surplus water quantity but not the power generation or water supply quantity.In general,the SWAT-ILMP model is applicable and effective for water resource prediction and management systems.The results from different scenarios can provide multiple alternatives to support rational water resource allocation in the study area.
文摘With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the character- istics of energy consumption and related carbon emission, with the objective of saving energy, reducing carbon emission, and lessening environmental impact. Focusing on urban ecosystems, the biggest energy consumer, a method for estimating energy consumption and related carbon emission was established at the urban sector scale in this paper. Based on data for 1996-2010, the proposed method was applied to Beijing in a case study to analyze the consumption of different energy resources (i.e., coal, oil, gas, and electricity) and related carbon emission in different sectors (i.e., agriculture, industry, construction, transportation, household, and service sectors). The results showed that coal and oil contributed most to energy consumption and carbon emission among different energy resources during the study period, while the industrial sector consumed the most energy and emitted the most carbon among different sectors. Suggestions were put forward for energy conservation and emission reduction in Beijing. The analysis of energy consumption and related carbon emission at the sector scale is helpful for practical energy saving and emission reduction in urban ecosystems.
基金This study was funded by the National Natural Science Foundation of China (Crant No. 51779039).
文摘This study uses the HD and Ecolab modules of MIKE to simulate the hydrodynamic and water quality and predict the influence of shoreline changes in Bohai Bay, China. The study shows that shoreline changes weaken the residual current and generate a counter-clockwise circulation south of Huanghua Port, thereby resulting in weak water exchange capacity and low pollutant-diffusing capacity. Shoreline changes reduce the area of Bohai Bay, resulting in a smaller tidal prism and further weakening the water exchange capacity. This situation is not conducive to the diffusion of pollutants, and therefore may lead to increased water pollution in the bay. Shoreline changes hinder the spread of runoff, weaken the dilution effect of the river on seawater, and block the spread of coastal residual Current, thereby resulting in increased salinity near the reclamation area. Shoreline changes lead to an increase in PO4-P concentration and decrease in DIN concentration. The value of N/P near the project decreases, thereby weakening the phosphorus-limited effect.
基金This work was supported by the Fund for Innovative Research Group of the National Natural Science Foundation of China (No. 51421065), by the Program for New Century Excellent Talents in University (No. NCET-12-0059), and by the National Natural Science Foundation of China (Grant No. 41171068), and by the Fundamental Research Funds for the Central Universities (2015KJJCA09).
文摘Industrial symbiosis is the quintessential characteristic of an eco-industrial park. To divide parks into different types, previous studies mostly focused on qualitative judgments, and failed to use metrics to conduct quantitative research on the intemal structural or functional characteristics of a park. To analyze a park's structural attributes, a range of metrics from network analysis have been applied, but few researchers have compared two or more symbioses using multiple metrics. In this study, we used two metrics (density and network degree centraliza- tion) to compare the degrees of completeness and dependence of eight diverse but representative industrial symbiosis networks. Through the combination of the two metrics, we divided the networks into three types: weak completeness, and two forms of strong completeness, namely "anchor tenant" mutualism and "equality-oriented" mutualism. The results showed that the networks with a weak degree of completeness were sparse and had few connections among nodes; for "anchor tenant" mutualism, the degree of completeness was relatively high, but the affiliated members were too dependent on core members; and the members in "equality-oriented" mutualism had equal roles, with diverse and flexible symbiotic paths. These results revealed some of the systems' internal structure and how different structures influenced the exchanges of materials, energy, and knowledge among members of a system, thereby providing insights into threats that may destabilize the network. Based on this analysis, we provide examples of the advantages and effectiveness of recent improvement projects in a typical Chinese eco-industrial park (Shandong Lubei).