We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields...We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields in low magnetic fields(<14 T)at 4.2 K,whereas polarization reversal is directly achieved by two opposite electric fields under high magnetic fields(<45 T).Interestingly,the polarization curve of rising and falling fields for H∥u(magnetic easy axis)is irreversible when the magnetic field is close to 52 T.In this case,the rising and falling polarization curves can be individually reversed by the electric field,and thus require five cycles to recover to the initial condition by the order of the applied electric fields(+E,-E,-E,+E,+E).In addition,we find that ferroelectric phaseⅣcan be tuned from parallel to antiparallel in relation to ferroelectric phase AF2 by applying a magnetic field approximated to the c axis.展开更多
The design of heterostructured transition metal-based electrocatalysts with controlled composition and interfaces is key to increasing the efficiency of the water electrolysis and the elucidation of reaction mechanism...The design of heterostructured transition metal-based electrocatalysts with controlled composition and interfaces is key to increasing the efficiency of the water electrolysis and the elucidation of reaction mechanisms.In this work,we report the synthesis of well-controlled vertically aligned Ni/NiO nanocomposites consisting of Ni nanoclusters embedded in NiO,which result in highly efficient electrocatalysts for overall water splitting.We show that such a high catalytic efficiency toward both the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)originates from a synergetic effect at Ni/NiO interfaces that significantly reduces the energy barrier for water dissociation,and favours the formation of reactive H*intermediates on the Ni side of the interface,and OH_(ads) on the NiO side of the interface.A study of water chemisorption based on near-ambient pressure photoelectron spectroscopy indicates that the abundant hetero-interfaces in Ni/NiO nanocomposite promote the dissociation of water with a three-fold increase in the surface concentration of OH_(ads) compared with pure NiO.Density functional theory calculations indicate that Ni/NiO interface leads to the reduction of the water dissociation energy barrier due to a high concentration of oxygen vacancies at NiO side of the interface,whereas the formation of highly active metallic Ni sites with an optimal value of Gibbs free energy of H*(ΔG_(H*)=−0.16 eV)owes to a favourable adjustment of the electron energetics at the interface,thus accelerating the overall electrochemical water splitting.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074135,12104388,and 52272219)Nanyang Normal University,the Natural Science Foundation of Henan Province (Grant Nos.222300420255 and 232300421220)the Key Scientific and Technological Projiect of Technology Depeartment of Henan Province of China (Grant Nos.222102230105 and 212102210448)。
文摘We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields in low magnetic fields(<14 T)at 4.2 K,whereas polarization reversal is directly achieved by two opposite electric fields under high magnetic fields(<45 T).Interestingly,the polarization curve of rising and falling fields for H∥u(magnetic easy axis)is irreversible when the magnetic field is close to 52 T.In this case,the rising and falling polarization curves can be individually reversed by the electric field,and thus require five cycles to recover to the initial condition by the order of the applied electric fields(+E,-E,-E,+E,+E).In addition,we find that ferroelectric phaseⅣcan be tuned from parallel to antiparallel in relation to ferroelectric phase AF2 by applying a magnetic field approximated to the c axis.
基金the National Natural Science Foundation of China(21872116)F.E.Oropeza and V.A.de la Peña O’Shea are grateful for the funding supported by the EU(ERC CoG HyMAP 648319)and Spanish AEI(NyMPhA PID2019-106315RB-I00)+3 种基金Also,this work has been funded by the regional government of Comunidad de Madrid and European Structural Funds through their financial support to FotoArt-CM project(S2018/NMT-4367)Besides,Fundación Ramon Areces funded this work though ArtLeaf project.Kelvin H.L.Zhang also acknowledge the Sino-German Mobility Program(M-0377)SuperSTEM is the National Research Facility for Advanced Electron Microscopy,funded from the Engineering and Physics Research Council(EPSRC)M.Bugnet is grateful to the SuperSTEM Laboratory for microscope access,and to the School of Chemical and Process Engineering at the University of Leeds for a visiting associate professorship and financial support.
文摘The design of heterostructured transition metal-based electrocatalysts with controlled composition and interfaces is key to increasing the efficiency of the water electrolysis and the elucidation of reaction mechanisms.In this work,we report the synthesis of well-controlled vertically aligned Ni/NiO nanocomposites consisting of Ni nanoclusters embedded in NiO,which result in highly efficient electrocatalysts for overall water splitting.We show that such a high catalytic efficiency toward both the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)originates from a synergetic effect at Ni/NiO interfaces that significantly reduces the energy barrier for water dissociation,and favours the formation of reactive H*intermediates on the Ni side of the interface,and OH_(ads) on the NiO side of the interface.A study of water chemisorption based on near-ambient pressure photoelectron spectroscopy indicates that the abundant hetero-interfaces in Ni/NiO nanocomposite promote the dissociation of water with a three-fold increase in the surface concentration of OH_(ads) compared with pure NiO.Density functional theory calculations indicate that Ni/NiO interface leads to the reduction of the water dissociation energy barrier due to a high concentration of oxygen vacancies at NiO side of the interface,whereas the formation of highly active metallic Ni sites with an optimal value of Gibbs free energy of H*(ΔG_(H*)=−0.16 eV)owes to a favourable adjustment of the electron energetics at the interface,thus accelerating the overall electrochemical water splitting.