This paper presents a transactive demand response(TDR)scheme for a network of residential customers with generation assets that emphasizes interoperability within a transactive energy architecture.A complete laborator...This paper presents a transactive demand response(TDR)scheme for a network of residential customers with generation assets that emphasizes interoperability within a transactive energy architecture.A complete laboratory-based implementation provides the first(to our knowledge)realization of a comprehensive TDR use case that is fully compliant with the Institute of Electrical and Electronics Engineers(IEEE)2030.5 standard,which addresses interoperability within a cybersecure smart energy profile(SEP)context.Verification is provided by a full system integration with commercial hardware using Internet Protocol(IP)-based(local area network(LAN)and Wi-Fi)communication protocols and transport layer security(TLS)1.2 cryptographic protocol,and validation is provided by emulation using extensive residential smart meter data.The demand response(DR)scheme is designed to accommodate privacy concerns,allows customers to select their DR compliance level,and provides incentives to maximize their participation.The proposed TDR scheme addresses privacy through the implementation of the SEP 2.0 messaging protocol between a transactive agent(TA)and home energy management system(HEMS)agents.Customer response is handled by a multi-input multi-output(MIMO)fuzzy controller that manages negotiation between the customer agent and the TA.We take a multi-agent system approach to neighborhood coordination,with the TA servicing multiple residences on a common transformer,and use a reward mechanism to maximize customer engagement during the event-based optimization.Based on a set of smart meter data acquired over an extended time period,we engage in multiple TDR scenarios,and demonstrate with a fully-functional IEEE 2030.5-compliant implementation that our scheme can reduce network peak power consumption by 22%under realistic conditions.展开更多
Air-conditioning (AC) systems have the highest power consumption among the appliances and consumer devices used at residential homes and buildings. Reducing their energy use will lower peak time usage and lower CO2 em...Air-conditioning (AC) systems have the highest power consumption among the appliances and consumer devices used at residential homes and buildings. Reducing their energy use will lower peak time usage and lower CO2 emissions. Recently, employment of the Information and Communications Technologies (ICT) to the power grid has smartened the grid. In the smart grid new opportunities emerge for AC energy consumption control. The aim of this paper is to reduce the air conditioning energy consumption of residential customers. It proposes an architecture that provides easy management and control using sensor network web services. A simulation thermal model of a house considers house data and outside temperature is presented. Simulation results showed a proposed temperature control method can have significant energy saving while maintaining customer comfort.展开更多
基金Natural Sciences and Engineering Council of Canada(CRDPJ 477238-14)and Hydro Ottawa。
文摘This paper presents a transactive demand response(TDR)scheme for a network of residential customers with generation assets that emphasizes interoperability within a transactive energy architecture.A complete laboratory-based implementation provides the first(to our knowledge)realization of a comprehensive TDR use case that is fully compliant with the Institute of Electrical and Electronics Engineers(IEEE)2030.5 standard,which addresses interoperability within a cybersecure smart energy profile(SEP)context.Verification is provided by a full system integration with commercial hardware using Internet Protocol(IP)-based(local area network(LAN)and Wi-Fi)communication protocols and transport layer security(TLS)1.2 cryptographic protocol,and validation is provided by emulation using extensive residential smart meter data.The demand response(DR)scheme is designed to accommodate privacy concerns,allows customers to select their DR compliance level,and provides incentives to maximize their participation.The proposed TDR scheme addresses privacy through the implementation of the SEP 2.0 messaging protocol between a transactive agent(TA)and home energy management system(HEMS)agents.Customer response is handled by a multi-input multi-output(MIMO)fuzzy controller that manages negotiation between the customer agent and the TA.We take a multi-agent system approach to neighborhood coordination,with the TA servicing multiple residences on a common transformer,and use a reward mechanism to maximize customer engagement during the event-based optimization.Based on a set of smart meter data acquired over an extended time period,we engage in multiple TDR scenarios,and demonstrate with a fully-functional IEEE 2030.5-compliant implementation that our scheme can reduce network peak power consumption by 22%under realistic conditions.
文摘Air-conditioning (AC) systems have the highest power consumption among the appliances and consumer devices used at residential homes and buildings. Reducing their energy use will lower peak time usage and lower CO2 emissions. Recently, employment of the Information and Communications Technologies (ICT) to the power grid has smartened the grid. In the smart grid new opportunities emerge for AC energy consumption control. The aim of this paper is to reduce the air conditioning energy consumption of residential customers. It proposes an architecture that provides easy management and control using sensor network web services. A simulation thermal model of a house considers house data and outside temperature is presented. Simulation results showed a proposed temperature control method can have significant energy saving while maintaining customer comfort.