In this experimental prospective study, we aimed to analyze the effect of transient scrotal hyperthermia on the male reproductive organs, from the perspective of sperm parameters, semen plasma biochemical markers, and...In this experimental prospective study, we aimed to analyze the effect of transient scrotal hyperthermia on the male reproductive organs, from the perspective of sperm parameters, semen plasma biochemical markers, and oxidative stress, to evaluate whether different frequencies of heat exposure cause different degrees of damage to spermatogenesis. Two groups of volunteers (10 per group) received testicular warming in a 43~C water bath 10 times, for 30 min each time: group 1:10 consecutive days; group 2: once every 3 days. Sperm parameters, epididymis and accessory sex gland function, semen plasma oxidative stress and serum sex hormones were tested before treatment and in the 16-week recovery period after treatment. At last, we found an obvious reversible decrease in sperm concentration (P = 0.005 for Group 1 and P = 0.008 for Group 2 when the minimums were compared with baseline levels, the same below), motility (P= 0.009 and 0.021, respectively), the hypoosmotic swelling test score (P-- 0.007 and 0.008, respectively), total acrosin activity (P = 0.018 and 0.009, respectively), and an increase in the seminal plasma malondialdehyde concentration (P = 0.005 and 0.017, respectively). The decrease of sperm concentration was greater for Group 2 than for Group 1 (P = 0.031). We concluded that transient scrotal hyperthermia seriously, but reversibly, negatively affected the spermatogenesis, oxidative stress may be involved in this process. In addition, intermittent heat exposure more seriously suppresses the spermatogenesis compared to consecutive heat exposure. This may be indicative for clinical infertility etiology analysis and the design of contraceptive methods based on heat stress.展开更多
The aim of this study was to evaluate the semen quality of university students in Wuhan, the largest city in the world in terms of the number of university students. All student sperm donors recorded in the Hubei Prov...The aim of this study was to evaluate the semen quality of university students in Wuhan, the largest city in the world in terms of the number of university students. All student sperm donors recorded in the Hubei Province Human Sperm Bank from 1 March 2010 to 31 December 2013 were screened. At last, a total of 3616 semen samples from 1808 university student sperm donors were eligible and retrospectively analyzed. Each donor's semen parameters were averaged over two samples and compared with the World Health Organization criteria, and a generalized linear regression model was used to examine several determinants of semen quality. We found that the mean and median values were 3.0 ml and 2.8 ml for semen volume, 50.2 x 106 m1-1 and 50.0 x 106 m1-1 for sperm concentration, 148.1 x 106 and 142.1 x 106 for total sperm count, and 58.6% and 60.0% for total sperm motility. About 85.0% of donors had parameters that were all normal. Season and duration of abstinence were critical factors affecting semen quality. We also found a decrease in sperm concentration during the 4 years observation; however, this may not be a strong evidence to confirm the declining trend of semen quality. In conclusion, semen quality of university students in Wuhan was not optimal and should be paid high attention, long-term observation and further study should be carried out to confirm the present situation.展开更多
基金ACKNOWLEDGMENTS This study was supported by the National Science and Technology Support Program of the Ministry of Science and Technology (No. 2012BAI31B08), the National Natural Science Foundation of China (No. 31171380).
文摘In this experimental prospective study, we aimed to analyze the effect of transient scrotal hyperthermia on the male reproductive organs, from the perspective of sperm parameters, semen plasma biochemical markers, and oxidative stress, to evaluate whether different frequencies of heat exposure cause different degrees of damage to spermatogenesis. Two groups of volunteers (10 per group) received testicular warming in a 43~C water bath 10 times, for 30 min each time: group 1:10 consecutive days; group 2: once every 3 days. Sperm parameters, epididymis and accessory sex gland function, semen plasma oxidative stress and serum sex hormones were tested before treatment and in the 16-week recovery period after treatment. At last, we found an obvious reversible decrease in sperm concentration (P = 0.005 for Group 1 and P = 0.008 for Group 2 when the minimums were compared with baseline levels, the same below), motility (P= 0.009 and 0.021, respectively), the hypoosmotic swelling test score (P-- 0.007 and 0.008, respectively), total acrosin activity (P = 0.018 and 0.009, respectively), and an increase in the seminal plasma malondialdehyde concentration (P = 0.005 and 0.017, respectively). The decrease of sperm concentration was greater for Group 2 than for Group 1 (P = 0.031). We concluded that transient scrotal hyperthermia seriously, but reversibly, negatively affected the spermatogenesis, oxidative stress may be involved in this process. In addition, intermittent heat exposure more seriously suppresses the spermatogenesis compared to consecutive heat exposure. This may be indicative for clinical infertility etiology analysis and the design of contraceptive methods based on heat stress.
文摘The aim of this study was to evaluate the semen quality of university students in Wuhan, the largest city in the world in terms of the number of university students. All student sperm donors recorded in the Hubei Province Human Sperm Bank from 1 March 2010 to 31 December 2013 were screened. At last, a total of 3616 semen samples from 1808 university student sperm donors were eligible and retrospectively analyzed. Each donor's semen parameters were averaged over two samples and compared with the World Health Organization criteria, and a generalized linear regression model was used to examine several determinants of semen quality. We found that the mean and median values were 3.0 ml and 2.8 ml for semen volume, 50.2 x 106 m1-1 and 50.0 x 106 m1-1 for sperm concentration, 148.1 x 106 and 142.1 x 106 for total sperm count, and 58.6% and 60.0% for total sperm motility. About 85.0% of donors had parameters that were all normal. Season and duration of abstinence were critical factors affecting semen quality. We also found a decrease in sperm concentration during the 4 years observation; however, this may not be a strong evidence to confirm the declining trend of semen quality. In conclusion, semen quality of university students in Wuhan was not optimal and should be paid high attention, long-term observation and further study should be carried out to confirm the present situation.