期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Efficient and rapid conversion of human astrocytes and ALS mouse model spinal cord astrocytes into motor neuron-like cells by defined small molecules 被引量:1
1
作者 An-Dong Zhao Hua Qin +2 位作者 meng-li sun Kui Ma Xiao-Bing Fu 《Military Medical Research》 SCIE CSCD 2021年第1期62-78,共17页
Background: Motor neuron degeneration or loss in the spinal cord is the characteristic phenotype of motor neuron diseases or spinal cord injuries. Being proliferative and located near neurons, astrocytes are considere... Background: Motor neuron degeneration or loss in the spinal cord is the characteristic phenotype of motor neuron diseases or spinal cord injuries. Being proliferative and located near neurons, astrocytes are considered ideal cell sources for regenerating neurons.Methods: We selected and tested different combinations of the small molecules for inducing the conversion of human and mouse astrocytes into neurons. Microscopic imaging and immunocytochemistry analyses were used to characterize the morphology and phenotype of the induced neurons while RT-q PCR was utilized to analyze changes in gene expression. In addition, whole-cell patch-clamp recordings were measured to examine the electrophysiological properties of induced neurons.Results: The results showed that human astrocytes could be rapidly and efficiently converted into motor neuronlike cells by treatment with defined small molecules, with a yield of over 85% motor neuron-like cells attained. The induced motor neuron-like cells expressed the pan-neuronal markers TUJ1, MAP2, Neu N, and Synapsin 1 and motor neuron markers HB9, ISL1, CHAT, and VACh T. During the conversion process, the cells did not pass through a proliferative neural progenitor cell intermediate. The induced motor neurons were functional, showing the electrophysiological properties of neurons. The same chemical cocktail could induce spinal cord astrocytes from an amyotrophic lateral sclerosis mouse model carrying a SOD1 mutation to become motor neuron-like cells that exhibited a decrease in cell survival and an increase in oxidative stress compared to that observed in wild-type MNs derived from healthy mice. Moreover, the chemical induction reduced oxidative stress in the mutant astrocytes.Conclusions: The results of the present study demonstrated the feasibility of chemically converting human and mouse astrocytes into motor neuron-like cells that are useful for neurodegenerative disease modeling and regenerative medicine. 展开更多
关键词 Human astrocyte Motor neuron REPROGRAMMING TRANSDIFFERENTIATION CONVERSION Regeneration Amyotrophic lateral sclerosis NEURODEGENERATIVE
下载PDF
Direct conversion of human fibroblasts into dopaminergic neuron-like cells using small molecules and protein factors
2
作者 Hua Qin An-Dong Zhao +2 位作者 meng-li sun Kui Ma Xiao-Bing Fu 《Military Medical Research》 SCIE CSCD 2021年第2期162-173,共12页
Background:Generation of neurons is essential in cell replacement therapy for neurodegenerative disorders like Parkinson’s disease.Several studies have reported the generation of dopaminergic(DA)neurons from mouse an... Background:Generation of neurons is essential in cell replacement therapy for neurodegenerative disorders like Parkinson’s disease.Several studies have reported the generation of dopaminergic(DA)neurons from mouse and human fibroblasts by ectopic expression of transcription factors,in which genetic manipulation is associated with potential risks.Methods:The small molecules and protein factors were selected based on their function to directly induce human fetal lung IMR-90 fibroblasts into DA neuron-like cells.Microscopical,immunocytochemical,and RT-qPCR analyses were used to characterize the morphology,phenotype,and gene expression features of the induced cells.The wholecell patch-clamp recordings were exploited to measure the electrophysiological properties.Results:Human IMR-90 fibroblasts were rapidly converted into DA neuron-like cells after the chemical induction using small molecules and protein factors,with a yield of approximately 95%positive TUJ1-positive cells.The induced DA neuron-like cells were immunopositive for pan-neuronal markers MAP2,NEUN,and Synapsin 1 and DA markers TH,DDC,DAT,and NURR1.The chemical induction process did not involve a neural progenitor/stem cell intermediate stage.The induced neurons could fire single action potentials,which reflected partially the electrophysiological properties of neurons.Conclusions:We developed a chemical cocktail of small molecules and protein factors to convert human fibroblasts into DA neuron-like cells without passing through a neural progenitor/stem cell intermediate stage.The induced DA neuron-like cells from human fibroblasts might provide a cellular source for cell-based therapy of Parkinson’s disease in the future. 展开更多
关键词 Human fibroblasts Dopaminergic neurons Parkinson's disease Small molecules REPROGRAMMING TRANSDIFFERENTIATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部