期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tailoring electron transfer with Ce integration in ultrathin Co(OH)_(2) nanosheets by fast microwave for oxygen evolution reaction
1
作者 Ya-Nan Zhou Ruo-Yao Fan +7 位作者 Shu-Yue Dou Bin Dong Yu Ma Wen-li Yu meng-xuan li Yu-Lu Zhou Chen-Guang liu Yong-Ming Chai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期299-305,I0007,共8页
The intrinsic activity of Co(OH)_(2) for oxygen evolution reaction(OER)may be elaborately improved through the suitable valence adjustment.Ce modification at electronic level is proved to be an efficient strategy owin... The intrinsic activity of Co(OH)_(2) for oxygen evolution reaction(OER)may be elaborately improved through the suitable valence adjustment.Ce modification at electronic level is proved to be an efficient strategy owing to the flexible transformation of Ce^(3+)/Ce4+.Herein,Ce0.21@Co(OH)_(2) with the optimized Ce doping have been fabricated to tailor the fast electron transfer for the enhanced activity and stability for OER.Firstly,the obtained core-shell structure composed of vertical loose Co(OH)_(2) sheets not only exposes a large number of active sites,but also provides channels for Ce doping.Secondly,the high pressure microwave with instantaneous heating can fast introduce Ce into Co(OH)_(2),obtaining Cex@Co(OH)_(2) with well dispersion and close integration.The intimated interaction between Ce and Co species may provide the"d-f electronic ladders"for accelerating electron transfer of the catalytic surface.Meanwhile,Ce promotes the formation of Co-superoxide intermediate and/or the release of oxygen,which is considered to be the rate-determining step for OER.The electrochemical measurements confirmed the low overpotential of 300 m V at 10 m A cm^(-2) and great stability of Ce0.21@Co(OH)_(2) for OER.This work demonstrates a meaningful approach to realize the tuned electronic structure through metal doping. 展开更多
关键词 Ultrathin Co(OH)_(2) Ce doping Electron regulation High pressure microwave Oxygen evolution reaction
下载PDF
Controlled high-density interface engineering of Fe_(3)O_(4)-FeS nanoarray for efficient hydrogen evolution
2
作者 Min Yang Wen-Hui Hu +7 位作者 meng-xuan li Yu-Ning Cao Bin Dong Yu Ma Hui-Ying Zhao Feng-Ge Wang Jier Huang Yong-Ming Chai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期96-103,共8页
The rational design of double active sites system is vital for constructing high-efficiency iron sulfides electrocatalysts towards hydrogen evolution reaction(HER) in alkaline media. However, it remains a challenge to... The rational design of double active sites system is vital for constructing high-efficiency iron sulfides electrocatalysts towards hydrogen evolution reaction(HER) in alkaline media. However, it remains a challenge to controllably create the high-density interface of double sites for optimal synergistic effect.Herein, we reported a simple chemical oxidation-induced surface reconfiguration strategy to obtain the interface-rich Fe_(3)O_(4)-FeS nanoarray supported on iron foam(Fe_(3)O_(4)-FeS/IF) using FeS nanosheets as precursors. The abundant Fe_(3)O_(4)-FeS interfaces could improve the dispersion of active sites and facilitate the electron transfer, leading to enhanced hydrogen evolution efficiency. And meanwhile, by altering the oxidation temperature, the content of S and O could be effectively controlled, further achieving the ratio optimization of Fe_(3)O_(4)to FeS. Synchrotron-based X-ray absorption near-edge structure, X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy consistently confirm the changes of electronic structure and d-band center of Fe_(3)O_(4)-FeS after chemical oxidation. Consequently, Fe_(3)O_(4)-FeS/IF exhibits excellent alkaline HER activity with a low overpotential of 120.8 mV to reach 20 mA cm^(-2),and remains stable ranging from 10, 20 to 50 mA cm^(-2) for each 20 h, respectively. Therefore, the facile and controllable chemical oxidation may be an effective strategy for designing high-density interfaces of transition metal-based sulfides towards alkaline HER. 展开更多
关键词 High-density interfaces Double sites Chemical oxidation Hydrogen evolution reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部