We report the radio observations of the eclipsing black widow pulsar J1720-0534, a 3.26 ms pulsar in orbit with a low mass companion of mass 0.029 to 0.034 M⊙. We obtain the phase-connected timing ephemeris and polar...We report the radio observations of the eclipsing black widow pulsar J1720-0534, a 3.26 ms pulsar in orbit with a low mass companion of mass 0.029 to 0.034 M⊙. We obtain the phase-connected timing ephemeris and polarization profile of this millisecond pulsar(MSP) using the Five-hundred-meter Aperture Spherical radio Telescope(FAST), the Green Bank Telescope(GBT), and the Parkes Telescope. For the first time from such a system, an oscillatory polarization angle change was observed from a particular eclipse egress with partial depolarization, indicating 10-milliGauss-level reciprocating magnetic fields oscillating in a length scale of 5 ×10^(3)km(assuming an orbital inclination angle of 90°) outside the companion's magnetosphere. The dispersion measure variation observed during the ingresses and egresses shows the rapid raising of the electron density in the shock boundary between the companion's magnetosphere and the surrounding pulsar wind. We suggest that the observed oscillatory magnetic fields originate from the pulsar wind outside the companion's magnetosphere.展开更多
基金The Parkes Radio Telescope (Murriyang) is part of the Australia Telescope National Facility, which is funded by the Australian Government for operation as a National Facility managed by CSIROsupported by the National Natural Science Foundation of China (NSFC) grant Nos. 12041303, 12041304, 11873067, 12133004, 12203045, 12203070, 12203072, 12103013, U2031117 and T2241020+11 种基金the CAS-MPG LEGACY project and the National SKA Program of China No. 2020SKA0120200the Foundation of Science and Technology of Guizhou Province No. ((2021)023)the Foundation of Guizhou Provincial Education Department (No.KY(2021)303)the National Key Research and Development Program of China Nos. 2022YFC2205202 and 2022YFC2205203the Major Science and Technology Program of Xinjiang Uygur Autonomous Region Nos. 2022A03013-1, 2022A03013-3 and 2022A03013-4the National Key Research and Development Program of China No. 2022YFC2205203the 2021 project Xinjiang Uygur autonomous region of China for Tianshan elites and the Youth Innovation Promotion Association of CAS under No. 2023069support from the Youth Innovation Promotion Association CAS (id. 2021055)CAS Project for Young Scientists in Basic Research (grant YSBR-006)the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CASsupport from Zhejiang Provincial Natural Science Foundation of China under grant No. LY23A030001supported by the NSF Physics Frontiers Center award number 2020265。
文摘We report the radio observations of the eclipsing black widow pulsar J1720-0534, a 3.26 ms pulsar in orbit with a low mass companion of mass 0.029 to 0.034 M⊙. We obtain the phase-connected timing ephemeris and polarization profile of this millisecond pulsar(MSP) using the Five-hundred-meter Aperture Spherical radio Telescope(FAST), the Green Bank Telescope(GBT), and the Parkes Telescope. For the first time from such a system, an oscillatory polarization angle change was observed from a particular eclipse egress with partial depolarization, indicating 10-milliGauss-level reciprocating magnetic fields oscillating in a length scale of 5 ×10^(3)km(assuming an orbital inclination angle of 90°) outside the companion's magnetosphere. The dispersion measure variation observed during the ingresses and egresses shows the rapid raising of the electron density in the shock boundary between the companion's magnetosphere and the surrounding pulsar wind. We suggest that the observed oscillatory magnetic fields originate from the pulsar wind outside the companion's magnetosphere.