期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A novel surfactant N-hydroxy-9,10-epoxy group-octadecanamide:Part II.Its synthesis and application in flotation separation of spodumene and albite
1
作者 Wei-di ZHANG meng-jie tian Wei SUN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期3002-3015,共14页
A novel hydroxamic acid,N-hydroxy-9,10-epoxy group-octadecanamide(N-OH-9,10-O-ODA),was synthesised by modifying the structure of oleic acid.The carboxyl group of oleic acid was converted into an N-hydroxy amide group,... A novel hydroxamic acid,N-hydroxy-9,10-epoxy group-octadecanamide(N-OH-9,10-O-ODA),was synthesised by modifying the structure of oleic acid.The carboxyl group of oleic acid was converted into an N-hydroxy amide group,and an epoxy group was introduced into its structure.N-OH-9,10-O-ODA was used as a novel collector in the flotation separation of spodumene from one of its associated gangue minerals,specifically albite.N-OH-9,10-O-ODA exhibits remarkable selectivity,with a stronger affinity for collecting spodumene particles compared to albite particles.Zeta potential measurements and X-ray photoelectron spectroscopic analysis reveal that the adsorption quantity of N-OH-9,10-O-ODA on spodumene surface is comparable to that on albite surface.First-principles calculations demonstrate the diverse adsorption configurations of N-OH-9,10-O-ODA on surfaces of spodumene and albite,leading to its distinct collecting abilities for spodumene and albite particles. 展开更多
关键词 N-hydroxy-9 10-epoxy group-octadecanamide SPODUMENE ALBITE flotation separation oleic acid
下载PDF
Topological study about failure behavior and energy absorption of honeycomb structures under various strain rates 被引量:1
2
作者 Yu-chen Wei meng-jie tian +4 位作者 Chun-yang Huang Shao-wu Wang Xing Li Qian-ran Hu Meng-qi Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期214-227,共14页
High-speed impact threats and terrorist actions on the battlefield require the development of more effective protective materials and structures,and various protective structure is designed according their energy-abso... High-speed impact threats and terrorist actions on the battlefield require the development of more effective protective materials and structures,and various protective structure is designed according their energy-absorbing characteristics.In this research,the deformation behavior,microscopic failure modes and energy absorption characteristics of re-entrant hexagonal structure,regular hexagonal structure and regular quadrilateral structure are studied under different strain rates impact.The re-entrant hexagonal structure forms a“X”-shaped deformation zone,the regular quadrilateral and regular hexagonal structure form an“I”-shaped deformation zone.The microscopic appearance of the section is a mixed fracture form.The effects of the topological shape,cell angle,and cell height on the impact behavior of the structure were evaluated.When the cell height is fixed and the cell angle is changed,the energy absorption of the structure increase and then decrease as the relative density increase.The mechanical properties of the structure are optimal when the relative density is about 18.6%and the cell angle is22.5°.When the cell angle is fixed and the cell height is changed,as the relative density increases,the energy absorption of the structure gradually increases.The regular quadrilateral structure and the reentrant hexagonal structure experienced clear strain rate effects under dynamic impact conditions;the regular hexagonal structure did not exhibit obvious strain rate effects.The results presented herein provide a basis for further rational design and selection of shock-resistant protective structures that perform well in high-speed impact environments. 展开更多
关键词 Honeycomb structures Impact loading Negative Poisson's ratio Titanium alloy Dynamic response
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部